Поэтому дальнейший ход расчета будет следующим:
3. Определим необходимое передаточное отношение редуктора, воспользовавшись выражением (4.8), подставив все необходимые данные:
i=16,07.
Округлим i до целого числа. Возьмем i=16.
4. Исходя из того, что нам задано Тmin, и помня, что требуется убывающая характеристика наматывателя, будем иметь в виду, что Тmin= Тк. Тогда, подставив в выражение (4.6) D=Dк, найдем необходимое значение момента электродвигателя М0:
; (4.12)М0=0,11 Нּм.
По имеющимся теперь М0 и nx выберем электродвигатель. В данном случае нам подходит ЭДГС АСМ_400 (см. табл.4.1[1]). Его размеры следующие: D=60 мм, l=120 мм.
5. Найдем максимальное значение натяжения, так как Dэ=D0, то
; (4.13)Тнач=7,92 Н.
6. Найдем значение характеристического коэффициента N, который определим, воспользовавшись выражением (4.10):
N=1,32.
7. Найдем выражение характеристики наматывателя – ЭДГС в общем виде, воспользовавшись выражением (4.2):
Таблица 4.2
Расчет характеристики ЭДГС наматывателя
D,м | T,H | Tгр,Н |
0,2 | 7,92 | 5,32 |
0,22 | 7,85 | 4,74 |
0,24 | 7,7 | 4,25 |
0,26 | 7,5 | 3,81 |
0,28 | 7,27 | 3,41 |
0,3 | 7,04 | 3,04 |
0,32 | 6,81 | 2,69 |
0,34 | 6,58 | 2,36 |
0,36 | 6,36 | 2,05 |
0,38 | 6,14 | 1,74 |
0,393 | 6 | 1,45 |
На (рис.4.2) показана характеристика ЭДГС наматывателя.
4.3.Пусковой период наматывающих устройств
Расчет пускового периода наматывателя – электродвигателя глубокого
скольжения
Скорость приема ленты в течение пускового периода определяется следующим выражением:
, (4.14)где
, (4.15) . (4.16)В выражениях (4.15) и (4.16) присутствуют уже известные величины, определенные при расчете установившегося режима наматывающего электродвигателя: М0 – статический момент ЭДГС; nx – число оборотов на холостом ходу; i – передаточное отношение редуктора; η – КПД редуктора.
Однако в эти выражения входят также и неизвестные еще величины:
J – момент инерции вращающихся частей наматывателя;
МТ – момент трения в опорах вала наматывателя.
Момент трения в подшипниках качения достаточно мал, и, как правило, его принимают равным нулю.
Момент инерции вращающихся частей наматывателя определяется следующим образом:
, (4.17)где Jрул – момент инерции рулона;
, (4.18)здесь q – масса одного прогонного метра киноленты;
Jред.пр. – момент инерции редуктора, приведенный к валу наматывателя;
Jрот.пр. – момент инерции ротора, приведенный к валу наматывателя.
Рассчитаем пусковой период ЭДГС для двух случаев:
1) в начале намотки, когда R=R0,
2) в случае пуска почти полного рулона, например, если имел место обрыв ленты (R=Rк).
Исходные данные: М0=0,11 Нּм; nx=1400 об/мин; i=16; η=0,9; Lк=600 м.
1. Определим момент инерции вращающихся частей наматывателя, пользуясь выражением (4.17). В нашем случае, когда пусковой период определяется для начала намотки R=R0 и, следовательно, рулон еще не намотан, так что Jрул=0. Тогда выражение (4.17) будет выглядеть следующим образом:
(4.19)Момент инерции бобины Iб, найдем по формуле (20):
, (20)где Jд – момент инерции дисков бобины;
Jс - момент инерции сердечника бобины;
Jв - момент инерции втулки бобины;
Jот - момент инерции отверстий дисков.
; (4.21) ; (4.22) ; (4.23) . (4.24)В формулах (4.21 – 4.24):
R=0,5.D – наружного диаметра дисков,
r=0,5.d – внутреннего диаметра дисков, принимаем равным наружному диаметру втулки;
r1=0,5.d1 – внутреннего диаметра втулки;
R1=0,5.D1 –диаметра отверстий, сделанных в дисках бобины;
R2=0,5.D2 –диаметра осевой линии, проходящей через центры отверстий дисков;
γ =7,8.103 кг.м3 – плотность стали;
h – толщина дисков;
l – длина втулки бобины;
l1 – длина сердечника бобины;
n – количество отверстий в диске.
Подставим значения в формулы (4.21 – 4.24):
Подставим полученные значения в выражение (4.20):
Момент инерции редуктора будет зависеть от его вида и количества ступеней. При заданном передаточном отношении i=16 воспользуемся двухступенчатой цилиндрической зубчатой передачей (рис.4.3)
Схема двухступенчатого зубчатого редуктора
Рис.4.3.
Приведем геометрический расчет редуктора, необходимый как для проектирования наматывателя, так и для расчета момента инерции вращающихся частей наматывателя.
i = iб.iт .
Пусть iб = iт = i1/2; iб = iт =4.
Выберем минимальное число зубьев шестерни, находящейся на валу ЭДГС. Возьмем Z1=25; тогда число зубьев колеса быстроходной ступени
Z2=i. Z1; Z2=25.4=100.
Модуль зацепления m выбираем по стандарту СЭВ [9]. Чтобы не увеличивать габариты редуктора, желательно выбирать m не очень большим, но не меньше единицы. Возьмем m=1 и определим приближенно диаметры делительных окружностей шестерни и колеса:
d1=Z1.m; d1=25.1=25мм=0,025м;
d2=Z2.m; d2=100.1=100мм=0,1м.
Ширину венцов шестерни и колеса определим по формуле [9]:
b=ψbd.d + (0,2÷0,4).m,
где d – диаметр колеса или шестерни;
ψbd – коэффициент колеса. ψbd зависит от способа крепления колеса на валу, расположения опор, твердости материала шестерни [9].
Примем ψbd=0,4, тогда
b1=0,4.25 + (0,2÷0,4).1=10мм.
Теперь рассчитаем тихоходную передачу. Возьмем число зубьев шестерни Z2’=25; тогда число зубьев колеса тихоходной ступени
Z3=i. Z2’; Z3=25.4=100.
Возьмем m=1 и определим приближенно диаметры делительных окружностей шестерни и колеса:
d2’=Z2’.m; d2’=25.1=25мм=0,025м;
d3=Z3.m; d3=100.1=100мм=0,1м.
Примем ψbd=0,4, тогда
b2’=0,4.25 + (0,2÷0,4).1=10мм.
Приближенное значение момента инерции можно определить по формуле [9]:
; (4.25)где m – масса шестерни (колеса);
d – диаметр его делительной окружности.
Масса шестерни (колеса) m=V.ρ=πּr2ּbּρ.