Смекни!
smekni.com

Расчет пароводяного подогревателя (стр. 1 из 6)

Министерство образования РФ

Братский государственный технический университет

Факультет энергетики и автоматики

Кафедра промышленной теплоэнергетики

Курсовая работа

по дисциплине

«Тепломассообмен»

Расчет пароводяного подогревателя

Пояснительная записка

1016 ТО №в 28 КП 103Г

Выполнил

студент группы ЭОПус-02-1 Мельников Е. А.

Проверил

к.т.н., доцент кафедры ПТЭ Федяева В. Н.


Министерство образования РФ

Братский государственный технический университет

Факультет энергетики и автоматики

Кафедра промышленной теплоэнергетики

ЗАДАНИЕ

на курсовую работу по курсу

«Тепломассообмен»

студента 3 курса гр. ЭОПус-02-1

Мельникова Е. А.

1. Исходные данные

Рассчитать пароводяной подогреватель вертикального типа для подогрева воды системы отопления цехов производственных помещений при следующих условиях:

1. Давление воды Рв = 0,142 мПа

2. Температура воды на входе t`в = 20,5 0С

3. Температура воды на выходе t``в = 89,6 0С

4. Расход воды Gв = 214,8 м3

5. Давление греющего пара Pп = 0,57 мПа

6. Температура греющего пара tп = 175 0С

2. Графическая часть: 2 л *А1

Задание выдано – 8.02.03

Задание принял к исполнению _____________

Руководитель проекта к.т.н., доцент _____________ Федяева В. Н.
Содержание

Введение…………………………………………………………………...

1. Тепловой расчет подогревателя……………………………………….

2. Гидравлический расчет………………………………………………...

3. Механический расчет…………………………………………………..

4. Экономический расчет…………………………………………………

Заключение………………………………………………………………..

Список используемой литературы………………………………………

Угловая спецификация…………………………………………………...

ВВЕДЕНИЕ

Для закрепления теоретических знаний по курсу «Тепломасобменн» учебным планом предусмотрен курсовой проект (работа) для студентов дневной и заочной форм обучения. Целью проектирования – выполнение расчета, на основании которого производится окончательный выбор типа и конструкции аппарата, определения его размеров и выполнения чертежа аппарата. Тематика курсового проекта обычно охватывает разделы курса, связанные с расчетом рекуперативных теплообменников.

Теплообменными аппаратами называют устройства, предназначенные для передачи тепла от одного к другому, а также осуществления различных технологических процессов: нагревание, охлаждения, кипения, конденсации и др.

Теплообменные аппараты классифицируются по различным признакам. Например, по способу передачи тепла их можно разделить на две группы: поверхностные (рекуперативные см. рис. 1 и регенеративные) и смещения. Требования к промышленным теплообменным аппаратам в зависимости от конкретных условий применения весьма разнообразны. Основными требованиями являются: обеспечение наиболее высокого коэффициента теплопередачи при возможно меньшем гидравлическом сопротивлении; компактность и наименьший расход материалов, надежность и герметичность в сочетании с разборностью и доступностью поверхности теплообмена для механической очистки её от загрязнений; унификация узлов и деталей; технологичность механизированного изготовления широких рядов поверхностей теплообмена для различного диапазона рабочих температур, давлений и т. д.

При созданиях новых, более эффективных теплообменных аппаратов стремятся, во-первых, уменьшить удельные затраты материалов, труда, средств и затрачиваемый при работе энергии по сравнению с теми же показателями существующих теплообменников. Удельными затратами для теплообменных аппаратов называют затраты, отнесенные к тепловой производительности взаданных условиях, во-вторых, повысить интенсивность и эффективность работы аппарата. Интенсивностью процесса или удельной тепловой производительностью теплообменного аппарата газывается количество теплоты, передаваемого в единицу времени через единицу поверхности теплообмена при заданном тепловом режиме.

Интенсивность процесса теплообмена характеризуется коэффициентом теплопередачи k. На интенсивность и эффективность влияют также форма поверхности теплообмена; эквивалентный диаметр и компоновка каналов, обеспечивающие оптимальные скорости движения сред; средний температурный напор; наличие турбулизирующих элементов в каналах; оребрение и т. д. Кроме конструктивных методов интенсификации процесса теплообмена существует режимные методы, связанные с изменением гидродинамических параметров и режима течения жидкости у поверхности теплообмена. Режимные методы включают: подвод колебаний к поверхности теплообмена, создание пульсации потоков, вдувание газа в поток либо отсос рабочей среды через пористую стенку, наложении электрических или магнитных полей на поток, предотвращения загрязнений поверхности теплообмена путем сильно турбулизации потока и т. д.

1.ТЕПЛОВОЙ РАСЧЕТ

ПОДОГРЕВАТЕЛЯ

При заданном давлении пара Рп=0,57МПа, температуре насыщения ts=160 оС по h-s диаграмме определяем состояние пара. Если он перегрет, то имеем две зоны теплообмена:

первая - охлаждение пара от tп=175 оС до ts=160 оС

вторая - конденсация насыщенного пара на вертикальных тру­бах.

Считаем, что переохлаждения конденсата нет. Расчет поверх­ности проводим отдельно для каждой зоны (рис. 2).

1.1 Определяем параметры теплоносителей при средних темпера­турах воды и пара

tв.ср=0,5(t`в+t``в), 0С,

где t’в - температура воды на входе в подогреватель, °С;

(t`в=20,5°С),

t”в - температура воды на выходе из подогревателя, °С,

(t``в=89,6°С),

tв.ср=0,5(20,5+89,6)=55,05 0С,

tп.ср=0,5(tп+ts), 0С,

где tп. - температура перегретого пара, °С; (tп=175 °С),

ts - температура насы­щенного пара, °С, (ts=160 °С),

tп.ср=0,5(175+160)=167,5 оС,

По таблицам физических свойств воды и водяного пара опре­делим их основные параметры.

При tв.ср. определяем следующие справочные данные:

Св= 4,183

-теплоемкость воды;

rв=986,19

- плотность воды;

uв=0,5 10-6

-коэфициент кинематической вязкости;

lв=0,653

- коэффициент теплопроводности;

Рrв =3- число Прандтля.

При tn.ср. определяем:

Сn=2,49

- теплоемкость пара;

rп=3,9

- плотность пара;

uп=3,7 10-6

-коэффициент кинематической вязкости пара;

lп=0,0316

- коэффициент теплопроводности;

Рrп =1,2- число Прандтля.

1.2 Определяем количество теплоты, передаваемой паром воде,

, кВт

где Gв - объемный расход воды,

; (Gв=0,0567
),

Св - теплоемкость воды,

; (Св=4,183
),

Q=0,0567 986,19 4,183(89,6-20,5)=17008.2 кВт.

Вычисляем количество теплоты, передаваемой паром воде в 1-и зоне,

Q 1 = D n× С n×( tп – t s), кВт ,

где Dп - массовый расход пара,

; (Dп=8,14
),

Сп- теплоемкость пара,

; (Сn=2,49
),

1.3 Определяем расход пара

,
,

где r-теплота парообразования, определяемая по температуре насыщения

пара,

.

Dп=

=8,13
;

Q1=8,13 2,49 (175-160)=303.841 кВт.

1.4 Определяем количество теплоты, передаваемой паром воде во 2-й зоне,

Q2=Dn×r, кВт.

Q2=8,13 2053,4=16704.35 кВт.

Проверим полученное значение переданной теплоты паром воде:

Q=Q1+Q2, кВт.

Q=303.841+16704,35=17008.2 кВт.

Выберем произвольно диаметр трубок и скорость воды в них:

материал: сталь (задан) lст=38

;

скорость воды: wв =1,6

;