Процесс разрушения поверхности протекает главным образом под влиянием фотохимических реакций, вызываемых действием ультрафиолетовых лучей. Это доказывается, в частности, сравнением изменения поверхности резин в атмосферных условиях под разными светофильтрами: при отсутствии УФ лучей (отрезаются лучи с λ < < 0,39 мк) изменение поверхности оказывается несравненно меньшим, чем под действием лучей с длинами волн до 0,32 мк.
Такое явление характерно для резин со светлыми наполнителями, потому что последние (окиси цинка, титана, магния, литопон и др.) в отличие от углеродных саж способны поглощать УФ лучи и являются вследствие этого сенсибилизаторами химических реакции в резине.
Растрескивание и разрушение резин
Растрескивание резин в атмосферных условиях протекает с относительно большой скоростью и является вследствие этого наиболее опасным видом старения.
Основным условием образования трещин на резине является одновременное воздействие на нее озона и растягивающих усилий. Практически такие условия в той или иной степени создаются при эксплуатации почти всех резиновых изделий. Согласно современным представлениям, образование зародышевых озонных трещин на поверхности резин связывается или с одновременным разрывом под действием озона нескольких ориентированных в одном направлении макромолекул, или с разрывом структурированной хрупкой пленки озонида под влиянием напряжений. Проникновение озона в глубь микротрещин ведет к дальнейшему их разрастанию и разрыву резин.
Исследование кинетики растрескивания резин на открытом воздухе при постоянной деформации растяжения (интенсивность растрескивания оценивалась в условных единицах по девятибалльной системе) показывает, что различные резины отличаются между собой не только по времени появления видимых трещин τу и времени разрыва τр, но и по отношению скоростей процессов образования и разрастания трещин.
Важнейшими факторами, определяющими атмосферостойкость резин, а также весь ход процесса растрескивания, являются:
¾ реакционная способность резин по отношению к озону;
¾ величина растягивающих напряжений;
¾ воздействие солнечной радиации.
Защита резин от растрескивания
Для предохранения резин от растрескивания применяются два вида защитных средств: антиозонанты и воски.
В отличие от анткоксидантов, оказывающих умеренное защитное действие на тепловое старение резин, эффективность влияния антиозонантов и восков на озонное старение весьма велика.
Антиозонанты.
К числу типичных и наиболее эффективных антиозонантов относятся соединения класса N,N'-замещенных-n-фени-лендиамина и производных дигидрохинолина. Защита от действия озона осуществляется также некоторыми дитиокарбаматами, производными мочевины и тиомочевины, n-алкокси-N-алкиланилином и др.
Механизм действия антиозонантов в последние годы привлекает внимание многих ученых. В результате исследования влияния антиозонантов на кинетические закономерности озонирования и растрескивания каучуков и резин. сложилось несколько разных представлений по этому вопросу.
Широко обсуждается образование сплошного защитного слоя на поверхности резин за счет мигрирующего антиозонанта, продуктов его реакции с озоном и продуктов реакции озона с каучуком, в которой участвует антиозонант.
Предполагается, что последний тип реакций приводит или к устранению разрыва макромолекул, или к сшиванию их обрывков.
Образование поверхностного слоя антиозонанта или продуктов его взаимодействия с озоном, обеспечивающего эффективную защиту резин, можно ожидать лишь в случае, если они находятся в смолообразном состоянии и могут создавать при миграции сплошной равномерный слой. Действительно, согласно опытам, озоностойкость резины из НК, содержащей кристаллический антиозонант N-фенил-N'-изопропил-n-фенилендиамин (ФПФД), в ряде случаев оказывается до начала миграции антиозонанта на поверхность даже несколько выше, чем после образования слоя выцветшего ФПФД. Это связано, по-видимому, с тем, что, хотя отдельные кристаллические образования антиозонанта и могут оказывать некоторое защитное действий на резины, в промежутках между такими образованиями на резине должны появляться «слабые» места, обусловленные обеднением поверхностного слоя резины антиозонантом за счет его выцветания и отсутствием чисто механической защиты за счет кристаллов антиозонанта.
Решающее значение миграции антиозонантов кристаллической структуры на поверхность с точки зрения эффективности их защитного действия может быть поставлено под сомнение, так как защитное действие антиозонантов обычно проявляется уже при дозировках, не превышающих предела их растворимости в резине. Так, N-фенил-.N'-изопропил-n-фенилендиамин является эффективным в резинах из НК и других неполярных каучуков при концентрации 1— 2 вес. ч. на каучук. Вероятно, основную роль в защите резин играет антиозонант, растворенный в поверхностном слое резины.
Механизм защитного действия, основанный на сшивании обрывков макромолекул или на устранении их распада, представляется вероятным, однако требует дальнейших экспериментальных подтверждений.
Весьма распространенной является концепция, согласно которой антиозонанты на поверхности резин связывают озон, препятствуя его взаимодействию с резиной.
Проведенные нами исследования действия антиозонантов на реакцию каучука с озоном (в растворе ССl4) показали, что антиозонанты не влияют на характер кинетической кривой озонирования каучука и практически не изменяют энергии активации процесса. В присутствии антиозонанта увеличивается лишь общее количество поглощенного озона. Однако, как следует из данных о накоплении кислородсодержащих групп, скорость реакции самого каучука с озоном при этом снижается. Одновременно снижается также скорость деструкции макромолекул. В этих условиях происходит одновременное озонирование каучука и антиозонанта.
Исследования кинетики озонирования самого антиозонанта (в растворе) показало, что энергия активации этой реакции для ФПФД несколько выше, чем для каучука (1,4 ккал/моль), и скорость взаимодействия этого антиозонанта с озоном во всей интересующей области температур превышает скорость озонирования каучука (при весовом соотношении каучука и антиозонанта 100: 5).
Все это дает основание полагать, что реакция антиозонанта с озоном на поверхности резин играет определенную роль в защите резин от озонного старения. Однако скорость реакции для разных антиозонантов не коррелируется с их эффективностью при растрескивании резин, поэтому процесс не является определяющим в защитном действии разных соединений.
Изложенное позволяет заключить, что в настоящее время нет общепризнанной и в достаточной мере обоснованной точки зрения на механизм действия антиозонантов. Этот вопрос требует серьезного изучения. Однако этот механизм, надо полагать, различен для разных типов соединений, и, вероятно, один тип антиозонантов действует не по одному, а по разным механизмам.
Защитное действие антиозонантов растет с увеличением их концентрации. Однако практически применение антиозонантов в концентрациях, значительно превышающих предел их растворимости, не представляется возможным, поэтому используются комбинации , состоящие из. двух антиозонантов преимущественно разной химической структуры. Наиболее эффективные системы антиозонантов, состоящие из ФПФД, параоксинеозона (ПОН), ацетонанила и ряда других .продуктов, увеличивают τu в атмосферных условиях в несколько раз.
Воски.
Некоторые смеси углеводородов парафинового, изопарафинового и нафтенового ряда, представляющие собой продукты, по свойствам подобные воскам, осуществляют физическую защиту резин от атмосферного старения. Оптимальными защитными свойствами обладают воски с длиной молекулярной цепи в 20—50 углеродных атомов. Эффективны воски в основном только в статически напряженных резинах. Защитное действие восков основано на их способности образовывать на поверхности резин сплошную пленку, препятствующую взаимодействию резины с озоном. Сущность явления образования пленки сводится к следующему: при охлаждении резин после процесса вулканизации введенный в резиновую смесь воск образует в резине пересыщенный раствор, из которого в дальнейшем происходит его кристаллизация. Кристаллизация вещества из пересыщенного раствора в полимере может осуществляться как в объеме, так и на его поверхности («выцветание»). Последнее приводит к образованию защитной пленки.
Эффективность защитного действия восков связана в первую очередь с озонопроницаемостью этой пленки, определяемой толщиной пленки и основными физико-химическими характеристиками воска. Наряду с этим эффективность воска в большой степени зависит от температуры эксплуатации резин; обычно с повышением температуры эксплуатации защитное действие воска ухудшается. Чем выше температура плавления воска (в определенных пределах), тем в большем интервале температур при прочих равных условиях он может работать. При повышении температуры эксплуатации резин необходимо применение восков с более высокой температурой плавления. Имеются данные, свидетельствующие о том, что эффективная защита осуществляется при условии, если температура эксплуатации резин на 15—20 °С ниже температуры плавления воска. Эта величина уменьшается при повышении дозировок воска и применении смешанных восков.
С учетом того, что температура плавления не может служить однозначной характеристикой специфического воскообразного состояния вещества с широким температурным интервалом размягчения, были предложены новые характеристики восков—температура начала и температура полного размягчения, определяющиеся при изучении термомеханических свойств восков. Использование этих параметров позволило установить, что в отличие от вышеуказанного, по данным ускоренных лабораторных испытаний, защитное действие ряда восков с увеличением температуры (от 25 до 57 °С) возрастает.