Смекни!
smekni.com

Резины, стойкие к старению (стр. 1 из 8)

Московский Авиационный Институт

(Технический Университет)

Кафедра материаловедения

Курсовая работа

по материаловедению

на тему:

"Резины, стойкие к старению"

Проверил: Вишневский Г.Е.

Выполнил: Павлюк Д.В.

Гр. 02-105


Содержание:

1. Введение

2. Атмосферное старение резин

3. Защита резин от атмосферного старения

4. Изменение механических свойств резин при термическом старении

5. Термическое старение резин при сжатии

6. Защита резин от радиационного старения

7. Список используемой литературы


ВВЕДЕНИЕ.

Резиной называется продукт специальной обработки (вулканизации) каучука и серы с различными добавками.

Резина отличается от других материалов высокими эластическими свойствами, которые присущи каучуку - главному исходному материалу резины. Для резиновых материалов характерна высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.

По условиям эксплуатации к резине предъявляются раз­личные требования. Резиновая обкладка транспортерных лент, пе­редающих руду или каменный уголь, при низкой температуре должна быть морозостойкой и хорошо противостоять истиранию;

резиновая камера в рукавах для нефтепродуктов должна быть стойкой к набуханию; резиновая обкладка железнодорожных ци­стерн для перевозки соляной кислоты—стойкой к ее химическому действию и т. д.

Особые требования предъявляются к резиновым изделиям, при­меняемым в самолетах, в конструкциях которых имеются сотни разнообразных резиновых деталей. Такие изделия, наряду с ком­пактностью и малым весом, должны быть эластичны и прочны. Очень важно сохранение деталями их свойств в широких пределах температур и в ряде случаев при воздействии различных жидких и газовых сред. При полете со скоростью 3600 км/ч даже на высоте 5000 м температура нагрева обшивки доходит до +400 °С; детали же находящиеся в узлах двигателей, должны сохранять свои свой­ства при температуре, доходящей до +500 ˚С. В то же время ряд деталей подвергается воздействию температур порядка минус 60 °С и ниже. Поскольку габариты деталей самолетов оставаться практически постоянными в продолжение всего срока службы, малые остаточные деформации сжатия являются необхо­димым качеством таких резин. Еще большие требования предъ­являются к резинам для ракетостроения.

Наряду с широко применяемыми в резиновом производстве каучуками об­щего назначения — натуральным (НК) и бутадиен-стирольными (СКС-ЗОА, СКС-30, СКМС-30 и др.) используются и специальные:

хлоропреновые каучуки (А, Б, С, НТ), бутадиен-нитрильные (СКН-18, СКН-26, СКН-40, СКН-40Т), бутилкаучук, химически стойкие фторкаучуки (СКФ-32-12, СКФ-62-13), теплостойкие кремнийорганические полимеры (СКТ). Осваиваются стереорегулярные каучуки: полибутадиеновый (СКД) и изопреновые (СКИ). Ведутся поиски новых каучуков на основе соединений, содержащих бор, фосфор, азот и другие элементы.

Резина как конструкционный материал в ряде ее свойств суще­ственно отлична от металлов и других материалов. Важнейшая особенность ее состоит в способности к перенесению под действием внешней нагрузки значительных деформаций без разрушения. К ос­новным особенностям резины также относятся: малые величины модулей при сдвиге, растяжении и сжатии; большое влияние дли­тельности действия приложенной нагрузки и температурного фак­тора на зависимость напряжение—деформация; практически по­стоянный объем при деформации; почти полная обратимость де­формации; значительные механические потери при циклических деформациях.

Вулканизаты мягкой резины под влиянием ряда складских или эксплуатационных факторов, действующих изолированно или чаще комплексно, изменяют свои технически ценные свойства. Измене­ние сводится к снижению эластичности и прочности, к появлению затвердения, хрупкости, трещин, изменению окраски, увеличению газопроницаемости, т. е. к большей или меньшей потере изделиями их технической ценности. Влияние кислорода воздуха, и в особен­ности озона, ведет к старению и утомлению резины. Этому способствуют: тепло и свет, напряжения, возникающие при динамическом или статическом нагружении, включая и нерациональное складирование, влияние агрессивных сред или каталитическое действие солей металлов.

Низкие температуры ведут к снижению эластичности резины, к повышению ее хрупкости. Эти изменения углубляются с длитель­ностью охлаждения. Однако с возвращением к нормальным температурам первоначальные свойства восстанавливаются. Влияние размеров и особенностей формы изделия в резине сказывается зна­чительно больше, чем в других конструкционных материалах. Ста­билизация в резине ее технически ценных свойств, борьба с явле­ниями старения, утомления и замерзания представляют в настоя­щее время одну из важных задач современной технологии резины.

АТМОСФЕРНОЕ СТАРЕНИЕ И ЗАЩИТА РЕЗИН

Проблема увеличения долговечности резиновых изделий непос­редственно связана с повышением сопротивления резни различным видам старения. Одним из наиболее распространенных и разруши­тельных видов старения является атмосферное старение резин кото­рому подвержены практически все изделия, контактирующие при эксплуатации или хранении с воздухом.

Атмосферное старение представляет собой комплекс физических и химических превращений резни, протекающих под воздействием атмосферного озона и кислорода, солнечной радиации и тепла.

Изменение физико-механических свойств резин

В атмосферных условиях так же, как и при тепловом старении, резины постепенно теряют свои эластические свойства независимо от того, находятся ли они в напряженном или ненапряженном состоя­нии. Особенно интенсивно старятся резины на основе НК со светлы­ми наполнителями. Быстро (через 1—2 года) наступает заметное изменение свойств у резин из бутаднен-ннтрильного, бутадиенстирнльного каучуков и из наирита. Наиболее стойкими являют­ся резины на основе СКФ-26, СКЭП, СКТВ и бутилкаучука.

Существенно влияет на скорость изменения свойств резин в атмос­ферных условиях солнечная радиация, ускоряя в некоторых случаях процесс в пять и более раз.

В саженаполненных резинах такая разница в скорости старения является в первую очередь результатом сильного нагревания поверх­ности резин под действием прямых солнечных лучей. Поскольку тем­пература оказывается важнейшим параметром, влияющим на все протекающие процессы, представлялось необходимым создать на­дежный метод ее экспериментального определения.

Исследование температуры резин на открытом воздухе показало, что суточное изменение ее, так же как и изменение температуры воздуха (при отсутствии облачности), приближенно описывается синусоидальными кривыми. Перегрев по сравнению с воздухом (при температуре воздуха 26 °С) достигает 22 °С у черной и 13 °С у белой резины.

Ход изменения температуры резины в течение суток следует за ходом изменения величины солнечной радиации, и перегрев резины является функцией последней. Наряду, с этим перегрев зависит от теплообмена между резиной и воздухом. Это позволяет, исходя из потока солнечной радиации и используя уравнение теплообмена для системы плоская пластина — газ, определять температуру поверх­ности резин расчетным путем. В частности, зная абсолютные макси­мумы температуры в разных географических точках, можно рассчи­тать максимальную температуру, до которой в этих местах будет нагреваться поверхность резины. Для Москвы эта температура рав­на 60 °С (абсолютная максимальная 37 °С), для Ташкента 81 °С (абсо­лютная максимальная 45°С).

Повышение температуры поверхности резины даже на 20—25 °С может вызвать резкое изменение скорости старения. Таким образом, этот параметр необходимо принимать во внимание при оценке сроков старения резин в атмосферных условиях.

Определение температуры резин, находящихся на воздухе под различными светофильтрами, показало, что нагрев резины происхо­дит практически полностью за счет инфракрасной части солнечной радиации, оказывающей решающее влияние на скорость старения саженаполненных резин. Так, за 140 суток экспозиции резин из НК в г. Батуми сопротивление разрыву падает в среднем (в %): на открытом воздухе — на 34, под фильтром, пропускающим 70% инфра­красных и не пропускающим ультрафиолетовых лучей,—на 32, под фильтром, пропускающим 40% инфракрасных лучей, а также не­большое количество ультрафиолетовых,— на 24, под фольгой — на 20.

На основании изложенного можно заключить, что изменение физико-механических свойств ре­зин в условиях атмосферного ста­рения обусловлено главным обра­зом процессом теплового старения, протекающим под действием тепла и атмосферного кислорода. В соответствии с этим эффективное снижение скорости изменения фи­зико-механических свойств резин при атмосферном старении также, как и при тепловом старении, может быть достигнуто с помощью противостарителей главным обра­зом у резин на основе НК.

Изменение физико-механичес­ких свойств резин в атмосферных условиях может оказывать влияние на долговечность резиновых изделий в случае их длительного пребывания на воздухе в ненапря­женном состоянии или при достаточно малых напряжениях. Сущест­вен этот процесс также для деформированных резин, хорошо защи­щенных от действия озона или изготовленных из озоностойких каучуков, длительно эксплуатирующихся на воздухе.

Изменение поверхности резин

В атмосферных условиях значительные изменения претерпевает поверхность резин, и в первую очередь поверхность светлых резин из НК. Помимо сравнительно быстрого изменения цвета поверхност­ный слой сначала размягчается, а затем постепенно становится жест­ким и приобретает вид тисненой кожи. Одновременно поверхность покрывается сеткой трещин.