Смекни!
smekni.com

Суперфиниширование (стр. 3 из 3)

Рис 5.2. Зависимость удель­ной тангенциальной составляющей силы резания Р, от давления бруска р-

1 — суперфиниширование по обычной схеме, 2 — суперфини­ширование с ультразвуковыми колебаниями

Тот факт, что наложение на брусок ультразвуковых ко­лебаний облегчает условия резания и улучшает самозата-чивание бруска, указывает на целесообразность исполь­зования этого метода обработки при суперфинишировании деталей из труднообрабатываемых материалов, имеющих низкую твердость и высокую пластичность (цветные, титановые, жаропрочные сплавы, коррозионно-стойкие стали и др.). Основной проблемой при суперфиниширова­нии этих материалов по обычной схеме является образо­вание налипов металла на режущей поверхности бруска, которые приводят к ухудшению качества обрабатываемой поверхности вследствие появления на ней от-

5.4. Торцовое суперфиниширование

Существующие промышленные методы финишной об­работки плоских высокоточных поверхностей — доводка монослоем свободного абразивного зерна (пастами, су­спензиями) или закрепленного зерна (шаржированными притирами) — имеют ряд недостатков. При обработке сво­бодным зерном производительность процесса и стойкость абразивного слоя ограничены невозможностью повышения скорости и давления выше критических значений (и= =0,5—1 м/с; /?==0,2—0,3 МПа), с увеличением которых происходят удаление абразивной смеси с притира и из­мельчение зерен. Поверхностный слой металла может на­сыщаться свободными абразивными частицами, что сни­жает износостойкость деталей. При обработке шаржиро­ванными притирами монослой закрепленных зерен быстро затупляется, вследствие чего стойкость его невысока, а производительность с течением времени снижается.

Способ торцового суперфиниширования, при котором многослойный инструмент с закрепленным зерном пред­ставляет собой круг чашечной формы (или набор брус­ков) со сплошной или прерывистой торцовой рабочей поверхностью, таких недостатков не имеет. В этом слу­чае инструмент вращается и может дополнительно со­вершать осциллирующее движение; деталь, установ­ленная на магнитном или вакуумном столе, вращается (см. рис. 1.7, д, е). Траектории абразивных зерен по обра­батываемой поверхности в зависимости от соотношения чисел оборотов круга и детали представляют собой либо циклоидальные кривые (/гд/Пк<1), либо эллиптические кривые («д/Пк> 1). Предпочтительным является встреч­ное суперфиниширование.

Выбор межцентрового расстояния А и расчет повер­хности контакта 5к круга с деталью могут быть выпол-ныны с помощью следующих формул:

Торцовое суперфиниширование осуществляется как в режиме самозатачивания и преобладающего резания, так и в режиме трения — полирования. При обработке чугуна СЧ 21-40 высокие результаты по съему металла (25— 30 мкм/мин) достигнуты кругом 63СМ10МЗКЛ при ско­рости и =2 м/с и давлении р=0,3 МПа. При обработке деталей из закаленной стали (60—65 НКСэ) лучшие ре­зультаты достигнуты инструментом из эльбора. Круги из эльбора ЛОМ28МЗК 100% при и=3 м/с и р=0,&bsol; МПа обеспечивают повышенный съем (30—60 мкм/мин), причем износ кругов из эльбора в 50—100 раз меньше, чем электрокорундовых. Круги длительное время сохра­няют высокую режущую способность, однако повышение твердости сверх оптимальной приводит к быстрому прекращению резания. Снижение давления до 0,05 МПа и увеличение частоты вращения детали до 700— 1000 мин~1 переводят процесс в режим трения—поли­рования. При этом параметр шероховатости /?а=0,02— —0,08 мкм. Шаржирования обработанной поверхности абразивом не происходит.

Высокая точность формы деталей достигается при тор­цовом суперфинишировании. Так, при обработке колец диаметром 150 мм отклонение от плоскостности не пре­вышает 3—5 мкм. В настоящее время проводятся ра­боты по применению торцового суперфиниширования для обработки колец упорных роликоподшипников, концевых мер длины, сферических поверхностей.

Список используемой литературы

1. З.И. Кремень, И.Х. Страшевский '' Хонингование и суперфиниширование деталей'' Ленинград, ''Машиностроение'' 1988г.