Смекни!
smekni.com

Ферромагнетики (стр. 1 из 8)

Міністерство освіти та науки України

Національний університет „Львівська політехніка”

Курсова робота

На тему:”Ферромагнетики”

З курсу: „Матеріалознавство”

Виконав:

Студент гр.ЕА-21

Перевірив:

Васьків

Львів-2003

Зміст:

Вступ......................................................................................3

1) Початкове намагнічування......................................................................5

2) Модель внутрішньої будови ферромагнетика..........................................7

2) Магнітне поле в речовині........................................................................7

3) Намагніченість.........................................................................................8

4) Магнітна проникність різних тіл. Тіла парамагнітні і діамагнітні.....9

5) Циклічне перемагнічування....................................................................11

6) Рух парамагнітних і діамагнітних тіл у магнітному полі.

Досліди Фарадея............................................................................................14

7) Молекулярна теорія магнетизму.............................................................17

8) Магнітний захист.......................................................................................18

9) Особливості феромагнітних тіл................................................................20

10) Властивості ферромагнетиків і якісні основи природи

Ферромагнетизму......................................................................................28

11) Вивчення гистерезиса ферромагнітних матеріалів..................................32

12) Основи теорії ферромагнетизму...............................................................32

13) Ферромагнітні матеріали............................................................................35

14) Магнітні властивості деяких магніто-м”яких матеріалів........................37

15) Магнітні властивості деяких магніто-твердих матеріалів.......................38

16) Експерементальне вивчення властивостей ферромагнетиків...................39

Висновки................................................................................................................44

Список використаної літератури..........................................................................46

Вступ

Ферромагнетизм, один з магнітних станів кристалічних, як правило, речовин, що характеризується рівнобіжною орієнтацією магнітних моментів атомних носіїв магнетизму. Рівнобіжна орієнтація магнітних моментів (мал. 1) установлюється при температурах Т нижче критичної Q і обумовлена позитивним значенням енергії межэлектронного обмінної взаємодії. Феромагнітна упорядкованість магнітних моментів у кристалах (атомна магнітна структура - коллінеарна або неколлинеарна) безпосередньо спостерігається і досліджується методами магнітної нейтронографії. Речовини, у яких встановився феромагнітний порядок атомних магнітних моментів, називають ферромагнетиками. Магнітна сприйнятливість (ферромагнетиків позитивна (c > 0) і досягає значень 104-105 гс/э, їхня намагніченість J (або індукція В = Н +4p) росте зі збільшенням напруженості магнітного поля Н нелінійно і в полях 1-100 э досягає граничного значення Js - магнітного насичення. Значення J залежить також від "магнітної передісторії" зразка, це робить залежність J від Н неоднозначної (спостерігається магнітний гистерезис).

У магнітному відношенні всі речовини можна розділити на слабомагнітні

( парамагнетики й діамагнетики) і сильнонамагнічені (феромагнетики).

Пара- і діамагнетики при відсутності магнітного поля ненамагнічені і характеризуються однозначною залежністю J від H.

Ферромагнетиками називають речовини (тверді), що можуть мати спонтанну намагніченість, тобто намагнічені вже при відсутності зовнішнього магнітного поля. Типові представники ферромагнетиків – це залізо, кобальт і багато їхніх сплавів.

Початкове намагнічування

Під дією зовнішнього магнітного поля, створеного струмом у котушці, накладеної на сталевий магнитопровід, відбувається процес орієнтації доменов у магнитопроводе і зсув їхніх границь. Це приводить до намагнічування сталевого магнитопроводу, причому намагніченість збільшується зі збільшенням зовнішнього магнітного поля.

Намагніченість М феромагнітного матеріалу росте тільки до граничного значення, називаного намагніченістю насичення Мs. Залежність намагніченості М від напруженості поля М(H) показана на мал. 2 штриховою лінією. На тім же малюнку показана лінійна залежність B0(H)=0М. Складаючи ординати кривій 0М(H) і прямій М0(H), одержуємо ординати новій кривій B(H) - кривій первісного намагнічування (рис 2). Криву B(H) можна розділити на чотири ділянки :

1) майже лінійна ділянка 0а, що відповідає малим напряженностям поля, показує, що магнітна індукція збільшується відносно повільно і майже пропорційно напруженості полючи;

2) майже лінійна ділянка аб, на якому магнітна індукція В росте також майже пропорційно напруженості поля, але значно швидше, ніж на початковій ділянці ;

3) ділянка бв - коліно кривій намагнічування, що характеризує уповільнення росту індукції B;

4) ділянка магнітного насичення - ділянка , розташована вище крапки в; тут залежність знову лінійна, але ріст індукції B дуже сильно уповільнений у порівнянні з другим. Магнітна індукція, що відповідає намагниченности насичення, називається індукцією насичення Bs.

Таким чином, залежність магнітної індукції від напруженості поля у феромагнітного матеріалу досить складна і не може бути виражена простою розрахунковою формулою. Тому при розрахунку магнітних ланцюгів, що містять ферромагнетики, застосовують зняті експериментально криві намагнічування B(H) магнітних матеріалів. Крива намагнічування вперше була отримана експериментально в 1872 році професором Московського університету А. Г. Столетовым.


Абсолютна магнітна проникність ферромагнетика визначається для довільної крапки А кривої намагнічування (мал. 3) через тангенс кута нахилу січної 0А к осі абсцис, тобто

Де mв, mн, mм - масштаби відповідних величин .

Крива зміни магнітної проникності r для феромагнітного матеріалу дана на тім же мал. 3. Як видно з графіка, магнітна проникність з ростом напруженості поля змінюється в досить широких границях, що утрудняє її застосування для розрахунків. На кривій Мr(H) відзначають два характерних значення магнітної проникності:

початкове (мал. 3)



2. максимальне

Початкова магнітна проникність характеризує можливість використання ферромагнетика в слабких магнітних полях. Максимальна магнітна проникність визначає верхню границю використання матеріалу. Так, наприклад, для листової електротехнічної сталі Мн=250-1000, а Мmax=500-30000.

Модель внутрішньої будови ферромагнетика

Модель внутрішньої будівлі ферромагнетика служить для пояснення утворення доменів у ферромагнетику і їхньої переорієнтації при намагнічуванні.

Прилад складається з рамки з дном з органічного скла і встановленими на ньому двадцятьма вістрями. Вістря розміщені в чотири ряди на відстані приблизно 15 мм друг від друга. На кожне вістря насаджений сталевий намагнічений циліндрик з одним закругленим торцем. Зверху рамка закрита склом, що охороняє циліндрики від зіскакування з вістря. Прилад пристосований для горизонтальної діапроекции.

При випадковому розташуванні магнітиків останні мимовільно групуються так, що в кожній групі магнітики мають визначену орієнтацію (домени, або області мимовільного намагнічування). Під дією зовнішнього магнітного поля всі магнітики орієнтуються уздовж його силових ліній.

Для демонстрації потрібний проекційний апарат із пристосуванням для горизонтальної проекції і смугові магніти.

Магнітне поле в речовині.

Якщо в магнітне поле, утворене струмами в провідниках увести деяку речовину, поле зміниться. Це пояснюється тим, що будь-яка речовина є магнетиком, тобто здатна під впливом магнітного поля намагнічуватися – здобувати магнітний момент М. Цей магнітний момент складається з елементарних магнітних моментів mo, зв'язаних з окремими частками тіла М = mo.

В даний час встановлено, що молекули багатьох речовин володіють власним магнітним моментом, зумовленим внутрішнім рухом зарядів. Кожному магнітному моменту відповідає елементарний круговий струм, що створює в навколишньому просторі магнітне поле. При відсутності зовнішнього магнітного поля магнітні моменти молекул орієнтовані безладно, тому зумовлене ними результуюче магнітне поле дорівнює нулю. Дорівнює нулю і сумарний магнітний момент речовини. Останнє відноситься і до тих речовин, молекули яких при відсутності зовнішнього поля не мають магнітних моментів.

Якщо ж речовину помістити в зовнішнє магнітне поле, то під дією цього поля магнітні моменти молекул здобувають переважну орієнтацію в одному напрямку, і речовина намагнічується – його сумарний магнітний момент стає відмінним від нуля. При цьому магнітні поля окремих молекул уже не компенсують один одного, у результаті виникає поле B. Інакше відбувається намагнічування речовин, молекули яких при відсутності зовнішнього поля не мають магнітного моменту. Внесення таких речовин у зовнішнє поле индукує елементарні кругові струми в молекулах, і молекули, а разом з ними і всією речовиною здобувають магнітний момент, що також приводить до виникнення поля В1. Більшість речовин при внесенні в магнітне поле намагнічуються слабо. Сильними магнітними властивостями володіють тільки феромагнітні речовини : залізо, нікель, кобальт, багато їхніх сплавів та ін.