Смекни!
smekni.com

Хонингование (стр. 3 из 4)

При выборе абразивного материала бруска придержи­ваются общепринятого принципа: для обработки стали необходимы бруски из электрокорунда, а для обработки чугуна и цветных металлов — из карбида кремния. Воз­можны отклонения от такого выбора: часто при обработке стали на операции предварительного хонингования при­меняют бруски из белого электрокорунда, а на опера­ции окончательного хонингования — бруски из зеленого карбида кремния, обеспечивающие менее шероховатую поверхность.

Важную роль в брусках играет связка. Большинство абразивных брусков выпускаются на керамической связке, обладающей пористостью и хрупкостью, обеспечивающей самозатачивание бруска. В то же время из-за хрупкости связки могут происходить сколы кромки брусков, и ос­колки, попадая между обрабатываемой поверхностью и брусками, наносят на обрабатываемую поверхность риски и царапины. Неравномерная твердость брусков часто является причиной налипания металла на более твердые участки рабочей поверхности брусков, что также приводит к появлению на обрабатываемой поверхности рисок и ца­рапин. Эти недостатки хонинговальных брусков на кера­мической связке затрудняют обработку не термообработанных стальных деталей, а для обработки деталей из алюминиевых и медных сплавов они в большинстве случаев непригодны.

Широкое распространение на предварительных опера­циях получили крупнозернистые хонинговальные бруски на бакелитовой связке. Они обладают высокой проч­ностью на изгиб и эластичностью, вследствие чего при хонинговании уменьшается число сколов. Преимуществом таких брусков является увеличение съема металла на 20—60 %.

С уменьшением раз­мера зерен шероховатость поверхности уменьшается; высота неровностей Рг зависит от размера зерна ds и составляет (0,04—0,1)ds. С переходом на крупнозер­нистые бруски съем металла возрастает, например, с уве­личением зерен в 2 раза съем металла возрастает примерно на 25—30 %.

На окончательной операции при хонинговании в два-три перехода и при хонинговании в один переход выбор зернистости брусков определяется требованиями к шеро­ховатости обработанной поверхности детали. На пред­варительной операции применяют более крупнозернистые бруски, чтобы получить наибольшую производительность. При выборе твердости брусков ориентируются на середину диапазона твердостей для соответствующей зерни­стости бруска, материала детали и снимаемого при­пуска. При необходимости вы­бранную твердость брусков корректируют исходя из неко­торых соображений.

1. Чем грубее исходная поверхность детали и чем ин­тенсивнее съем металла, тем тверже должны быть бруски.

2. Чем меньше отношение длины отверстия к диа­метру, тем тверже должны быть бруски. В момент вы­хода концов брусков за край отверстия их давление воз­растает на 40—100 % за счет уменьшения площади ка­сания бруска с поверхностью металла, и при обратном ходе край отверстия выкрашивает наиболее выступающие абразивные зерна.

3. Чем меньше ширина брусков, тем более твердые бруски можно применять, так как с уменьшением их ширины облегчается удаление продуктов обработки.

4. Чем выше твердость обрабатываемого материала, тем мягче должны быть бруски.

Очень мягкие металлы (медь, алюминий) обрабаты­вают мягкими брусками. В этом случае выбор твердости брусков связан с явлением налипания металла на бруски. Налипание металла на бруски часто приводит к браку деталей по царапинам и задирам; происходит оно по следующей причине: при определенных условиях в некоторых местах поверхности бруска объем снимаемого металла превышает объем пространства для его размещения и металл, спрессовываясь, вдавливается в тело бруска.

С повышением твердости брусков уменьшается их пористость и увеличивается прочность, в результате чего ухудшаются условия для размещения стружки и обра­зуются более крупные налипы металла. С ростом про­изводительности процесса увеличивается количество стружки и возрастает опасность образования налипов. При снятии неровностей от предыдущей обработки опас­ность образования налипов металла уменьшается, так как облегчается отвод стружки. Это позволяет применять бо­лее твердые бруски. При обработке деталей с короткими отверстиями и отверстиями с сильно пересеченной по­верхностью (шлицевые отверстия) также целесообразно применять более твердые бруски, так как в процессе ра­боты поверхность брусков часто выходит из контакта с поверхностью детали и благодаря этому свободно смы­вается смазочно-охлаждающей жидкостью.

При хонинговании мягких металлов (меди, алюминия) объем снимаемой стружки получается весьма значитель­ным и образующиеся на брусках многочисленные круп­ные налипы металла наносят глубокие царапины на поверхность детали. В целях уменьшения размеров ца­рапин в этом случае выбирают мягкие бруски, при работе, с которыми уменьшается опасность образования крупных налипов.

5. Электрохимическое хонингование

Для значительного повышения производительности хонингования разработан способ электрохимического хонингования, при котором на механическое воздействие брусков накладывается эффект электрохимического (анодного) растворения металла. Одной из схем электрохимического хонингования является обработка брусками на токопроводящей связке: металлической и бакелитовой с графитным наполнителем. Однако при такой схеме часто наблюдается электроэрозионные явления на контакте брусок- деталь вследствии малого зазора, равного высоте выступающей части абразивных зерен и большой поверхностью контакта. Поэтому наиболее широкое распространение получила схема со специально установленными в хонинговальной головке катодами и нетокопроводящими или изолированными брусками (рис.4). Конструкция станка для электрохимического хонингования мало отличается от конструкции обычного хонинговального станка. Число оборотов, скорость возвратно-поступательного движе-ния, механизм радиальной подачи хонин-говальных брусков примерно одинаковы. Некоторые различия, обусловленные особен-ностями электрохимиче­ского процесса, состоят в том, что от отрицательного полюса источника ток медно-графитовыми щетками с по­мощью коллектора на вращающемся шпинделе подводит­ся к хонинговальной головке. Приспособление с обраба­тываемой деталью подключено к положительному полюсу. В качестве источников тока могут быть использованы низковольтные генераторы постоянного тока и выпрямите­ли, рассчитанные на силу тока 1000—10 000 А, позволяю­щие бесступенчато регулировать напряжение от 5 до 18В. Детали станка, находящиеся в контакте с электролитом, изготовлены из коррозионно-стойких сталей.

Резервуар для электролита имеет объем 500— 1000 дм в зависимости от требуемого съема материала. Большое влияние на производительность и шероховатость обработанной поверхности оказывает фильтрация электро­лита, благодаря которой из раствора удаляются отходы, представляющие собой смесь мельчайших стружек метал­ла, зерен абразива и хлопьеобразных продуктов окисле­ния, быстро забивающих обычные фильтры. Для фильтра­ции необходимо применять центрифуги и магнитные се­параторы.

Головка для электрохимического хонингования мало отличается от обычной. Катодом может служить кор­пус головки, имеющий меньший диаметр, чем диаметр обрабатываемого отверстия, на удвоенную величину межэлектродно­го зазора, или электрод, размещенный между хонинговальными брусками. Поверхности катодов не подвергаются изнашиванию и служат только для подвода тока. Бруски на токопроводной связке должны быть тщательно изолированы от несущих колодок для предотвращения короткого замы­кания. Головку с неподвижным катодом применяют для съема небольших припусков (до 0,5—0,8 мм), а головку с подвижным катодом — для съема припусков свыше 1 мм. Электрохимическое алмазное хонингование тонкостен­ных азотированных цилиндров из стали 38ХМЮА с твер­достью поверхностного слоя 62—67 НКСэ производят предварительно головкой с шестью алмазными брусками АС20250/200М1100 % и неподвижным катодом при следу­ющих параметрах обработки:

Окружная скорость, м/мин ........ 150—200

Скорость поступательного движения, м/мин . . 14—16

Давление брусков, МПа ......... 0,2—0,6

Плотность тока. А/см2 .......... 2—5

Начальный межэлектродный зазор, мм .... 0,4—0,5

Объемный расход электролита, л/мин ..... 20—40

За 2 мин удаляется припуск 0,3—0,4 мм. Погрешность формы цилиндров после обработки составляет не более 0,02 мм при первоначальной погрешности 0,1—0,2 мм. Параметр шероховатости обработанной поверхности после предварительного хонингования Ra= 0,32— 0,63 мкм. При последующем отделочном электрохимическом абразивном хонинговании в течение 30 с параметр Ra снижается до 0,08—0,16 мкм. В качестве инструмента применяют три подпружиненных бруска 63СМ14С2К и три жестко установленных деревянных бруска, поддерживающих межэлектродный зазор между катодом и обрабатываемой поверхностью.

Электрохимическое хонингование по сравнению с обыч­ным обладает рядом преимуществ. Производительность по съему металла в 4—8 раз выше и не зависит от твердости и прочности материала, а точность, обеспе­чиваемая хонингованием, достигается быстрее. Так как процесс ведется при небольших давлениях брусков, электрохимическим хонингованием целесообразно об­рабатывать детали пониженной жесткости. Экономичность электрохимического хонингования тем больше, чем выше припуски на обработку и чем хуже обрабатываемость материала. После электрохимического хонингования наблюдается «растра вливание» поверхностного слоя ме­талла по границам зерен на глубину до 3—4 мкм, поэтому обязательным является заключительный этап обработки с выключенным током в течение 10с, что позволяет удалить расплавленный слой.