Смекни!
smekni.com

О конструировании технорецепторов (стр. 1 из 2)

Виноградов Ю. А.

Что же здесь такого уж нового? спросит читатель. И это все, что автор может предложить «новому поколению»?...

Когда-то, на волне первой электронной эйфории возникло направление, которое стали называть бионикой. Его энтузиасты пытались понять, каким образом в мире живого достигаются результаты, от которых так далеки их собственные разработки. Понять и, конечно, превзойти...

В живом удивляло все. От органорецепторов, с их фантастической чувствительностью и разрешающей способностью, до общей организации нервной системы, неспешно, но мгновенно решающей задачи, остающиеся голубой мечтой и для нынешних компьютеров с их бешеными скоростями.

Но к биологическим «рекордам» не удалось даже сколько-нибудь заметно приблизиться. Не говоря уж о габаритах и весе электронных «чемоданов», которыми достигались и эти скромные результаты.

На том работы по бионике и кончились. Суть происходящего в живом, алгоритмы, которыми та или иная биологическая особь пользуется, решая насущные свои задачи, остались не понятыми. А успехов от быстродействующего электронного «навала» не произошло. Количество не захотело переходить в качество...

Но появились а в конце нашего века стали принимать все более и более грозные очертания обстоятельства, которые заставляют нас вновь обратиться к опыту живой природы.

Удобства и удовольствия цивилизованной жизни связаны, как это мы уже начинаем осознавать, с нарастающими изменениями в среде обитания человека. Изменениями, затрагивающими сами основы его биологического существования.

За удовольствия, как утверждают, надо платить. Но чем, как и сколько? На эти вопросы без видимых затруднений отвечают люди, «отвечающие» за технический прогресс. Они уверяют нас, что плата эта очень невелика. Что выгоды безусловно перекрывают потери. Рассказывают о том, что любой новый продукт, новая технология, вообще все новое проходит тщательную научно-техническую экспертизу и, лишь удовлетворив определенным нормам, получает путевку в жизнь.

Оставив пока все это без комментариев, обратимся лишь к всегда возникающему в таких разговорах слову «норма». Каков смысл этого понятного всем нам, казалось бы, слова? Несколько примеров.

Существуют международные нормы (о нормировании таких вещей отдельный разговор) на загрязнение продуктов питания радиоцезием (цезий-134 + цезий-137) не более 600 Бк/кг для любого продукта. (Бк беккерель единица радиоактивности; соответствует одному распаду в секунду.) Наши нормы до самых недавних пор превышали эти международные в 10...15раз и более. А на многие продукты не устанавливались вообще.

«Нормы» могут меняться и во времени. Многие из нас еще помнят рентгеновские аппараты для примерки обуви (московский ГУМ), «лечение» рентгеном ангины. Помнят часы со светящимися циферблатами, содержащими радий-226 (альфа, бета, гаммаизлучатель с периодом полураспада 1600 лет), и многое-многое другое, тоже бывшее когда-то «нормой».

Можно было бы попытаться объяснить эту странную подвижность «норм» последними, лишь недавно полученными научными результатами, заставляющими пересматривать неверные представления о воздействии на человека саму по себе чрезвычайно консервативную биологическую единицу того или иного технопродукта. Но увы: все, что касается вышеприведенного, было известно очень давно.

Такого рода примеры можно было бы множить и множить. Но и этого достаточно, чтобы понять: «нормы», о которых нам говорят, имеют особый, отличный от общепринятого смысл.

Эти «нормы» результат ведомственных исследований, выполненных, как гласила чеканная формула, «в свете указаний».

Указания могли быть самыми разными... До, например, требования снизить балльность землетрясений в районе нового строительства.

Бывало и такое... «Только имейте в виду, что один кюри на квадратный километр нам не нужен» говорил член правительства своему академику (заказывалась значительно более высокая «норма» радиационного загрязнения в послечернобыльские времена). И это было..

Но кроме наук, направленных на решение такого рода «практических задач», есть еще наука академическая, которая относительно редко оказывается в таком уж явном подчинении у знающего, каким должен быть результат. Так может быть она уже что-то выяснила и сможет дать дельный совет в этих новых, угрожающих уже всем нам обстоятельствах? Нет, к сожалению. Поведение мировой экосистемы, прогноз ее реакции на мощный пресс со стороны разнородных, никогда прежде не встречавшихся с ее «аборигенами» техногенных новообразований задача чрезвычайной, фантастической сложности. Глобальные модели, которые временами нам демонстрируют, содержат в себе слишком много предположений и допущений, чтобы принимать их всерьез лишь после очень сильного упрощения картины мира оказывается возможным перейти к каким-то оценкам, строить какие-то прогнозы. Такие разделы науки принято называть математическими: математическая лингвистика, математическая биология и т.п. Занятия ими небесполезны, если не забывать о принятых допущениях. Если помнить, что получаемые здесь результаты можно «прикладывать» к объекту первоначального интереса, лишь удовлетворяя собственное любопытство.

Ну, а что же нам все-таки делать? В который раз целиком и полностью довериться ведомственным специалистам, которые завтра откажутся от своих сегодняшних рекомендаций, или поискать еще какие-то средства?... Пусть не радикальные, но способные хотя бы отсрочить наказание за наше беспутное прошлое и настоящее...

Мир живого существовал задолго до наших о нем представлений. Как ему это удавалось? Неужто для особи того или иного вида в ее отношениях с окружающим было достаточным полагаться лишь на собственную сенсорную систему, лишь на собственные представления об опасном и желанном? Лишь на опыт поколений в ее генах, позволяющий эффективно строить свое поведение и по отношению к впервые увиденному? Весь опыт эволюции на Земле говорит, что именно так оно и было. Оказывается, то, что мы называем развитием и даже прогрессом, было возможно без того, чтобы кто-то за тебя думал и решал...

Однако возможно ли нечто Подобное в нашем новом, техногенном мире? В мире неведомых, в большинстве своем недоступных нашим органорецепторам веществ, полей, сред? Эволюционно? безусловно нет. В любом случае человек как вид не располагает для этого временем (есть и другие препятствия...). Речь может идти лишь о средствах рукотворных. О специальной, исходно ориентированной на такое ее применение технике.'

Что же может представлять собой техника «органолептического» контроля никак себя не проявляющих, подчас смертельно опасных для человека техногенных новообразований? Ответ очевиден: мы должны научиться включать в рецепторное пространство индивидуума ИНДИВИДУУМА! информацию о появлении и относительной активности такого рода объектов.

Попробуем сформулировать требования к этой технике несколько определеннее, как-то обозначить область интересующих нас инженерных разработок. Сверяя их в каждом пункте с функциями органорецепторов и пытаясь следовать выверенному природой в ее тысячелетних экспериментах. Следовать в меру наших нынешних возможностей.

1. Органорецепторы имеют очень высокую, «подфоновую» чувствительность. Почему? Две причины легко просматриваются. С одной стороны, высокая чувствительность рецептора позволяет обнаружить нарастающие изменения фоновой ситуации (намеренно пользуемся таким неопределенным выражением) в самом их начале. И, сосредоточившись на этих изменениях, оценить заблаговременно опасность или, наоборот, их привлекательность.

С другой стороны, фон выступает здесь в качестве своего рода тест-генератора, непрерывно (!) проверяющего работоспособность органорецептора.

В рецепторе полезный сигнал может быть замаскирован шумом (будем понимать под этим весь комплекс факторов, дестабилизирующих его работу). Но может и не быть. Так, например, реакция счетчика Гейгера на естественный радиационный фон скорость счета в имп/мин - просто паспортная его характеристика. Скорость счета уменьшится, если мы спустимся в метро, и будет расти в самолете, набирающем высоту. И, разумеется, если мы приблизимся к источнику радиации...

Но даже если полезный сигнал исчезает в шумах, сегодня существует ряд приемов, позволяющих его оттуда извлечь. Правда, это потребует дополнительных затрат (они резко уменьшились с появление микроэлектронной техники) и, как правило, времени.

2. Органорецепторы работают непрерывно. Вспомним, что один лишь «видеоканал» человека имеет в своей работе перерывы, остальные включаются при рождении и отключаются незадолго до смерти. А то и после...

В этом отношении технорецепторы, снабженные даже самыми современными источниками питания, далеки от своих биологических прототипов. Оставив разработку высокоемких автономных энергоисточников специалистам (этим занимаются очень многие), разработчикам технорецепторов остается сосредоточиться на минимизации энергопотребления своих творений. Доведения его до величины, при которой продолжительность непрерывной работы технорецептора хотя бы отчасти приблизилась к нужной.

Современная электронная техника имеет в этом отношении несомненные успехи. Точнее - успех. Он связан с разработкой n и p-канальных полевых транзисторов, работающих в режиме обогащения. Комплиментарные (n- и р-канальные) их структуры составляют основу современной КМОП-техники. Энергопотребление КМОП-микросхем в статике - в режиме «горячей готовности»! — доведено сегодня почти до нуля.

Но цифровая техника - это техника электронных «мозгов», занимающихся переработкой информации. Которую еще надо получить.

Эта задача породила особый класс микросхем - так называемые аналого-цифровые компараторы. Такой компаратор включает в себя операционный усилитель (ОУ), способный многократно усилить слабый сигнал, и выходной каскад, формирующий из него сигнал цифрового стандарта для КМОП-анализатора. В части энергопотребления узкое место в - компараторе - усилитель. Его статическое (!) энергопотребление жестко связано со способностью усиливать сигналы высокой частоты: чем высокочастотной ОУ, тем выше его энергопотребление и в режиме «горячей готовности».