Смекни!
smekni.com

Криптология точки соприкосновения математики и языкознания (стр. 1 из 6)

Городская открытая научно-практическая конференция

школьников и студентов «Содружество»

Тема: Криптология: точки соприкосновения математики и языкознания

АВТОР: Пушко Дарья

Россия, г.Зеленогорск

Красноярского края

школа №164, 10А класс

РУКОВОДИТЕЛИ: Камышенко Г.Н.,

Линдт Т.Л.

учителя гимназии №164

Зеленогорск

2006

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ..............................................................................................

3

I ГЛАВА............................................................................................................................ КРИПТОГРАФИЯ: ИСТОРИЯ И СОВРЕМЕННОСТЬ............................. ТАЙНОПИСЬ В РОССИИ............................................................................ ШИФРЫ ПОДПОЛЬЯ.................................................................................... ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ В ЦИФРАХ...............................

4

-

7

8

10

II ГЛАВА................................................................................................. РОЛЬ ЯЗЫКА В СОСТАВЛЕНИИ И РАЗГАДКЕ ШИФРОВ.................. ЛИТЕРАТУРНЫЙ КРИПТОАНАЛИЗ......................................................... ЗАКЛЮЧЕНИЕ...............................................................................................

11

-

14

17

СПИСОК ЛИТЕРАТУРЫ....................................................................... 18

ВВЕДЕНИЕ

Уже неоднократно обсуждалась проблема совмещенного изучения двух, а то и несколько предметов школьной программы. В жизни невозможно обойтись без предметов, которые являются базовыми для школьной программы: элементарных основ физики, математики, химии, литературы, информатики. Изучая каждый предмет по отдельности, трудно понять всю его значимость и роль. Существуют и такие науки, где важен не только математический склад ума и умение использовать законы естественных наук, но и знания в гуманитарной области.

Неоспорим и тот факт, что все наиболее существенные открытия нашего времени происходят не в одной изолированной науке, а при непосредственном взаимодействии с другими дисциплинами. Следствием этого является важность междисциплинных проблем, однако основной акцент пока делается лишь на связях между предметами одного цикла – только естественного или гуманитарного. Между тем наука давно уже осознала и признала необходимость «наведения мостов» между естественными и гуманитарными дисциплинами, такими как языкознание и математика. В связи с введением профильного обучения большое значение приобрела проблема создания такого курса, который бы объединял две центральные дисциплины каждого цикла – языкознание и математику, представляется весьма актуальной. Наука криптология как раз совмещает в себе два этих основных предмета школьного образования.

Цель работы: изучив литературу по криптологии, выявить связь между лингвистикой и математикой.

Логичным следствием этого явились поставленные нами задачи:

- выяснить, что включает в себя понятие «криптология»;

- узнать, какие известны способы шифрования;

- изучить сферы использования шифров;

- выявить роль языка в разгадке шифров.


IГЛАВА

КРИПТОГРАФИЯ: ИСТОРИЯ И СОВРЕМЕННОСТЬ

Исторически криптография зародилась из потребности передачи секретной информации. Длительное время она была связана только с разработкой специальных методов преобразования информации с целью ее представления в форме недоступной для потенциального злоумышленника. С началом применения электронных способов передачи и обработки информации задачи криптографии начали расширяться.

В настоящее время, когда компьютерные технологии нашли массовое применение, проблематика криптографии включает многочисленные задачи, которые не связаны непосредственно с засекречиванием информации. Современные проблемы криптографии включают разработку систем электронной цифровой подписи и тайного электронного голосования, протоколов электронной жеребьевки и идентификации удаленных пользователей, методов защиты от навязывания ложных сообщений и т.п. Специфика криптографии состоит в том, что она направлена на разработку методов, обеспечивающих стойкость к любым действиям злоумышленника, в то время как на момент разработки криптосистемы невозможно предусмотреть все способы атаки, которые могут быть изобретены в будущем на основе новых достижений теории и технологического прогресса.

Криптоанализ – наука (и практика ее применения) о методах и способах вскрытия шифров. Криптография и криптоанализ составляют единую область знаний – криптологию, которая в настоящее время является областью современной математики, имеющий важные приложения в современных информационных технологиях.

Термин «криптография» ввел Д.Валлис. Потребность шифровать сообщения возникла очень давно. В V – VIвв. до н. э. греки применяли специальное шифрующее устройство. По описанию Плутарха, оно состояло из двух палок одинаковой длины и толщины. Одну оставляли себе, а другую отдавали отъезжающему. Эти палки называли скиталами. Когда правителям нужно было сообщить какую-нибудь важную тайну, они вырезали длинную и узкую, вроде ремня, полоску папируса, наматывали ее на свою скиталу, не оставляя на ней никакого промежутка, так чтобы вся поверхность палки была охвачена полосой. Затем, оставляя папирус на скитале в том виде, как он есть, писали на нем все, что нужно, а написав, снимали полосу и без палки отправляли адресату. Так как буквы на ней разбросаны в беспорядке, то прочитать написанное он мог, только взяв свою скиталу и намотав на нее без пропусков эту полосу.

Аристотелю принадлежит способ дешифрования этого шифра. Надо изготовить длинный конус и, начиная с основания, обертывать его лентой с шифрованным сообщением, сдвигая ее к вершине. В какой-то момент начнут просматриваться куски сообщения. Так можно определить диаметр скиталы.

В Древней Греции (IIв. до н. э.) был известен шифр, называемый «квадрат Полибия». Это устройство представляло собой квадрат 5*5, столбцы и строки которого нумеровались от 1 до 5. В каждую клетка этого квадрата записывалась одна буква (в греческом алфавит одна клетка оставалась пустой, а в латинском в одну клетку записывалось две буквы: I, J).


1 2 3 4 5
1 A B C D E
2 F G H I,J K
3 L M N O P
4 Q R S T U
5 V W X Y Z

В результате каждой букве отвечала пара чисел и шифрованное сообщение превращалось в последовательность пар чисел.

Например[1]

13 34 22 24 44 34 15 42 22 34 43 45 32
C O G I T O E R G O S U M

Шифр Цезаря

В Iв до н. э. Гай Юлий Цезарь во время войны с галлами, переписываясь со своими друзьями в Риме, заменял в сообщении первую букву латинского алфавита (А) на четвертую (D), вторую (В) – на пятую (Е), наконец, последнюю – на третью:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Сообщение об одержанной им победе выглядело так: YHQLYLGLYLFL[2]

Император Август (Iв. до н. э.) в своей переписке заменял первую букву на вторую, вторую – на третью и т.д., наконец, последнюю – на первую:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

Его любимое изречение было: GFTUJOBMFOUF[3]

Квадрат Полибия, шифр Цезаря входят в класс шифров, называемых «подстановка» или «простая замена». Это такой шифр, в котором каждой букве алфавита соответствует буква, цифра, символ или какая-нибудь комбинация.

К классу «перестановка» относится шифр «маршрутная транспозиция» и его вариант «постолбцовая транспозиция». В каждом из них в прямоугольник [n*m] сообщение вписывается заранее обусловленным способом, а столбцы нумеруются или обычным порядком следования, или в порядке следования букв ключа – буквенного ключевого слова. Так, ниже в первом прямоугольнике столбцы нумеруются в обычном порядке следования – слева направо, а во втором – в порядке следования букв слова «Петербург».

Используя расположение букв этого ключа в алфавите, получим набор чисел
[5 3 8 4 6 1 9 7 2]:

5 3 8 4 6 1 9 7 2
п р и л е п л я я
с я п р е м у д р
у м п р е м у д р
б у д е ш ь а б в
1 2 3 4 5 6 7 8 9
п р и л е п л я я
р д у м е р п я с
у м п р е м у д р
в б а ь ш е д у б

В первом случае шифрованный текст найдем, если будем выписывать буквы очередного столбца в порядке следования столбцов (прямом или обратном), во втором, - если будем выписывать буквы столбца в порядке следования букв ключа. Таким образом будем иметь: