Смекни!
smekni.com

Учебно-методический комплекс по дисциплине «логика» Учебно-методический комплекс (стр. 18 из 60)

Если А, то В; А В

Здесь "если А, то B" и "А" – посылки, "B" – заключение; горизонтальная черта стоит вместо слова "следовательно". Другая запись:

Если А, то B. А. Следовательно, В.

Благодаря этому правилу от посылки "если А, то В", используя посылку "А", мы как бы отделяем заключение "B". Например:

Если у человека грипп, он болен. У человека грипп.

Человек болен.

Это правило постоянно используется в наших рассуждениях. Впервые оно было сформулировано, насколько можно судить, учеником Аристотеля Теофрастом еще в III в. до н.э.

Соответствующий правилу отделения логический закон формулируется так:

В) & АВ,

если верно, что если А, то В, и А, то верно В. Например: "Если при дожде трава растет быстрее и идет дождь, то трава растет быстрее".

Рассуждение по правилу модус понес идет от утверждения основания истинного условного высказывания к утверждению его следствия. Это логически корректное движение мысли иногда путается со сходным, но логически неправильным ее движением от утверждения следствия истинного условного высказывания к утверждению его основания.

Например, правильным является умозаключение:

Если висмут – металл, он проводит электрический ток. Висмут – металл.

Висмут проводит электрический ток.

Но внешне сходное с ним умозаключение:

Если висмут – металл, он проводит электрический ток. Висмут проводит электрический ток.

Висмут металл.

логически некорректно. Рассуждая по последней схеме, можно от истинных посылок прийти к ложному заключению. Например:

Если человек собирает марки, он коллекционер. Человек – коллекционер.

Человек собирает марки.

Далеко не все коллекционеры собирают именно марки; из того, что человек коллекционер, нельзя заключать, что он собирает как раз марки. Истинность посылок не гарантирует истинности заключения.

Против смешения правила модус поненс с указанной неправильной схемой предостерегает совет: от подтверждения основания к подтверждению следствия заключать можно, от подтверждения следствия к подтверждению основания – нет.

МОДУС ТОЛЛЕНС

Так средневековые логики называли следующую схему рассуждения:

Если А, то B; неверно В. Неверно А.

Другая запись:

Если А, то В. Не-B. Следовательно, не-A.

Эта схема часто называется принципом фальсификации: если из какого-то утверждения вытекает следствие, оказывающееся ложным, это означает, что и само утверждение ложно. Посредством схемы от утверждения условного высказывания и отрицания его следствия осуществляется переход к отрицанию основания данного высказывания. Например:

Если гелий – металл, он электропроводен. Гелий неэлектропроводен.

Гелий – не металл.

МОДУС ПОНЕНДО ТОЛЛЕНС

Этим именем средневековые логики обозначали следующие схемы рассуждения:

Либо А, либо В; А
Неверно В
Либо А, либо В; В
Неверно А

Другая запись:

Либо А, либо В. А. Следовательно, не-B.Либо А, либо В. В. Следовательно, не-А.

Посредством этих схем от утверждения двух взаимоисключающих альтернатив и установления того, какая из них имеет место, осуществляется переход к отрицанию второй альтернативы: либо первое, либо второе, но не оба вместе; есть первое; значит, нет второго. Например:

Достоевский родился либо в Москве, либо в Петербурге. Он родился в Москве.

Неверно, что Достоевский родился в Петербурге.

Дизъюнкция, входящая в данную схему, является исключающей, она означает: истинно первое или истинно второе, но не оба вместе. Такое же рассуждение, но с неисключающей дизъюнкцией (первое или второе, но возможно, что и первое, и второе), логически неправильно. От истинных посылок оно может вести к ложному заключению:

На Южном полюсе был Амундсен или был Скотт. На Южном полюсе был Амундсен.

Неверно, что там был Скотт.

Обе посылки истинны: и Амундсен, и Скотт достигли Южного полюса, заключение же ложно, Правильным является умозаключение:

На Южном полюсе первым был Амундсен или Скотт. На этом полюсе первым был Амундсен.

Неверно, что там первым был Скотт.

МОДУС ТОЛЛЕНДО ПОНЕНС

Этим термином средневековые логики обозначали разделительно-категорическое умозаключение: первое или второе; не первое; значит, второе. Первая посылка умозаключения – разделительное (дизъюнктивное) высказывание, вторая – категорическое высказывание, отрицающее один из членов дизъюнкции; заключением является другой ее член:

А или В; неверно А В

Или:

А или В; неверно В А

Другая форма записи:

А или В. Не-А Следовательно, В. А или В. Не-В. Следовательно, А.

Например:

Множество является конечным или оно бесконечно. Множество не является конечным.

Множество бесконечно.

Иногда эту схему рассуждения именуют дизъюнктивным силлогизмом.

С использованием логической символики умозаключение формулируется так:

A v B, ~ A В

Или:

A v В, ~ В А

В современной логике модус толлендо поненс называется также правилом удаления дизъюнкции. Ему соответствует логический закон:

(A v B) & ~ AB,

если А или В и ~ А, то В.

ЗАКОНЫ ДЕ МОРГАНА

Широкое применение находят законы, названные именем американского логика А. де Моргана и позволяющие переходить от утверждений с союзом "и" к утверждениям с союзом "или", и наоборот:

~ (A & B)(~ A v ~ В),

если неверно, что есть и первое, и второе, то неверно, что есть первое, или неверно, что есть второе;

( ~ A v ~ В) → ~ & В),

если неверно, что есть первое, или неверно, что есть второе, то неверно, что есть первое и второе. Используя эти законы, от высказывания "Неверно, что изучение логики и трудно, и бесполезно" можно перейти к высказыванию "Изучение логики не является трудным, или же оно не бесполезно". Объединение этих двух законов дает закон (↔ – эквивалентность, "если и только если"):

~(A & B)(~ A v ~ B).

Словами обычного языка этот закон можно выразить так: отрицание конъюнкции эквивалентно дизъюнкции отрицаний. Например: "Неверно, что завтра будет холодно и завтра будет дождливо, тогда и только тогда, когда завтра не будет холодно или завтра не будет дождливо".

Еще один закон де Моргана утверждает, что отрицание дизъюнкции эквивалентно конъюнкции отрицаний:

~ (A v В)( ~ А & ~ В),

неверно, что есть первое или есть второе, если и только если неверно, что есть первое, и неверно, что есть второе. Например: "Неверно, что ученик знает арифметику или знает геометрию, тогда и только тогда, когда он не знает ни арифметики, ни геометрии". На основе законов де Моргана связку "и" можно определить, используя отрицание, через "или", и наоборот:

– "А и B" означает "неверно, что не-A или не-B",

– "А или В" означает "неверно, что не-А и не".

К примеру: "Идет дождь и идет снег" означает "Неверно, что нет дождя или нет снега"" "Сегодня холодно или сыро" означает "Неверно, что сегодня не холодно и не сыро".

ЗАКОН ПРИВЕДЕНИЯ К АБСУРДУ

Редукция к абсурду (приведение к нелепости) – это рассуждение, показывающее ошибочность какого-то положения путем выведения из него абсурда, т.е. логического противоречия. Если из высказывания А выводится как высказывание В, так и его отрицание, то верным является отрицание А. Например, из высказывания "Треугольник – это окружность" вытекает с одной стороны то, что треугольник имеет углы (быть треугольником значит иметь три угла), с другой, что у него нет углов (поскольку он окружность); следовательно, верным является не исходное высказывание, а его отрицание "Треугольник не является окружностью".

Закон приведения к абсурду представляется формулой:

В) & (А → ~ В) → ~ А,

если (если А, то В) и (если А, то не-B), то не-А

Приведение к нелепости, замечает математик Д. Пойа, имеет некоторое сходство с иронией, любимым приемом сатирика: ирония принимает определенную точку зрения, подчеркивает ее и затем настолько ее утрирует, что в конце концов приводит к явному абсурду.

Частный закон приведения к абсурду представляется формулой:

(А → ~ А) → ~ А,

если (если А, то не-A), то не-А. Например, из положения "Всякое правило имеет исключения", которое само является правилом, вытекает высказывание "Есть правила, не имеющие исключений"" значит, последнее высказывание истинно.

ЗАКОН КОСВЕННОГО ДОКАЗАТЕЛЬСТВА

Закон косвенного доказательства позволяет заключить об истинности какого-то высказывания на основании того, что отрицание этого высказывания влечет противоречие. Например: "Если из того, что 17 не является простым числом, вытекает как то, что оно делится на число, отличное от самого себя и единицы, так и то, что оно не делится на такое число, то 17 есть простое число".

Символически закон косвенного доказательства записывается так:

(~ АВ) & (~ А → ~ В)А,

если (если не-А, то В) и (если не-А, то не-В), то А.

Законом косвенного доказательства обычно называется и формула:

(~ А & ~ В))А,

если (если не, то В и не-B), то А. К примеру: "Если из того, что 10 не является четным числом, вытекает, что оно делится и не делится на 2, то 10 – четное число".