Можно также попытаться конкретизировать качественный характер установленный в рассматриваемом высказывании связи. Для этого используются модальные понятия. Результатами их применения будут высказывания: "Необходимо, что металлы проводят ток", "Хорошо, что они проводят ток", "Опровергнуто, что это так" и т.п. Очевидно, что первое из этих модальных высказываний является истинным, а третье – ложным.
Все модальные понятия распадаются на группы. Каждая из них дает характеристику с некоторой единой точки зрения. Так, для теоретико-познавательной конкретизации высказываний используются понятия "доказуемо", "опровержимо" и "неразрешимо", для нормативной – понятия "обязательно", "разрешено" и "запрещено", для оценочной – понятия "хорошо", "безразлично" и "плохо".
Точек зрения на тот или иной факт может быть сколь угодно много. Число групп модальных понятий, выражающих эти точки зрения также в принципе ничем не ограничено.
В логике рассматриваются только наиболее интересные и важные группы модальных понятий. К ним относятся, в частности, логические, физические, теоретико-познавательные, нормативные и оценочные модальные понятия.
В число логических модальных понятий входят: "логически необходимо", "логически возможно", "логически случайно", "логически невозможно" и др. Используя эти понятия, можно сформулировать такие, например, логические модальные высказывания: "Логически необходимо, что человек есть человек", "Логически возможно, что цирконий – металл", "Логически случайно, что Земля вращается", "Логически невозможно, что пять – простое число и пять одновременно не является простым числом". Во всех этих высказывания связи, устанавливаемые в немодальных высказываниях, характеризуются с одной и той же – логической – точки зрения. В чем именно она состоит, выясняет раздел логики, занимающийся изучением логических модальных понятий. Сейчас, не входя в подробности, можно отметить, что все приведенные высказывания являются истинными.
К физическим модальным понятиям относятся: "физически необходимо", "физически возможно", "физически случайно", "физически невозможно" и др. Физические модальные понятия иногда именуются также каузальными или онтологическими (от слова "онтология", означающего общую теорию бытия). С помощью данных модальных понятий можно сформулировать такие, к примеру, физические модальные высказывания: "Физически необходимо, что металлы пластичны", "Физически возможно, что существуют еще не открытые химические элементы", "Физически случайно, будет ли через год в этот день солнечно" и "Физически невозможно, что вечный двигатель будет создан". Все эти высказывания характеризуют связи, устанавливаемые в соответствующих немодальных высказываниях с некоторой единой точки зрения – физической, или онтологической. Ее смысл уточняет раздел логики, занимающийся изучением физических модальных понятий.
Теоретико-познавательные модальные понятия называются также эпистемическими (от греческого слова episteme – знание). Группа этих понятий обширна и распадается на ряд подгрупп.
Можно выделить, в частности, эпистемические модальные понятия, относящиеся к доказуемости: "доказуемо", "опровержимо", "неразрешимо". С их помощью формулируются такие эпистемические модальные высказывания, как: "Доказуемо, что на Луне нет жизни", "Опровержимо, что сумма углов квадрата равна 180°", "Неразрешимо, каким будет автомобиль через сто лет".
Еще одну подгруппу эпистемических модальных понятий составляют понятия, относящиеся к убеждению: "убежден", "сомневается", "отвергает". Доказуемость объективна и безлична, если что-то считается доказуемым, то таковым оно является для каждого. Иначе обстоит дело с убеждениями. Они могут быть разными у разных людей: при разговоре о каких-то конкретных убеждениях надо указывать, кому именно они принадлежат. С помощью понятий "убежден", "сомневается" и "отвергает" можно сформулировать такие, к примеру, эпистемические модальные высказывания: "Аристотель был убежден, что у женщины меньше зубов, чем у мужчины", "Платон сомневался в жизнеспособности античной демократии" и "Сократ отвергал возможность уклонения от вынесенного ему смертного приговора".
К нормативным модальным понятиям относятся "обязательно", "нормативно безразлично", "запрещено" и "разрешено". Они называются также деонтическими понятиями (от греческого слова deon – долг, правильность) и служат для характеристики действий человека с точки зрения определенной системы норм. Например: "Обязательно заботиться о близких", "Разрешено ездить в автобусе", "Безразлично, как человек называет свою собаку" и т.п. Здесь обязанность является характеристикой определенного круга действий с точки зрения принципов морали; разрешение относится к действию, не противоречащему системе правовых норм; нормативное безразличие утверждается относительно достаточно неопределенной системы норм, скажем, совокупности требований обычая, традиции и т.п.
Вместо слов "обязательно", "разрешено", "запрещено" могут использоваться слова "должен", "может", "позволено", "не должен", "необходимо" и т.п.
При употреблении понятий "обязательно", "разрешено" и т.п. всегда имеется в виду какая-то нормативная система, налагающая обязанность, предоставляющая разрешение и т.д. Поскольку существуют различные системы норм и нередко они не согласуются друг с другом, действие, обязательное в рамках одной системы, может быть безразличным или даже запрещенным в рамках другой. Например, обязательное с точки зрения морали может быть безразличным с точки зрения права; запрещенное в одной правовой системе может разрешаться другой такой системой и т.д.
Нормативное, или деонтическое, высказывание – это высказывание, устанавливающее какую-то норму поведения.
Чаще всего нормативное высказывание представляется повествовательным предложением с нормативными модальными понятиями. Иногда такое высказывание имеет форму повелительного (императивного) предложения: "Заботьтесь о ближних!", "Учитесь играть в крокет!" и т.п. В языковом выражении норм решающую роль играет контекст, в котором формулируется норма. Можно говорить об обычных, или стандартных, формулировках нормативных высказываний, но вряд ли можно сказать, что существует грамматическое предложение, в принципе не способное в каком-то контексте выразить такое высказывание.
Оценочные модальные понятия характеризуют объекты с точки зрения определенной системы ценностей. Эти понятия делятся, как уже говорилось, на абсолютные оценочные понятия: "хорошо", "(оценочно) безразлично", "плохо" и сравнительные оценочные понятия: "лучше", "хуже", "равноценно".
Оценочное высказывание устанавливает абсолютную или сравнительную ценность какого-то объекта.
Основные группы модальных понятий систематизируются следующей таблицей:
Логические модальные понятия | Логически необходимо | Логически случайно | Логически невозможно |
Физические модальные понятия | Физически необходимо | Физически случайно | Физически невозможно |
Эпистемические модальные понятия | Доказуемо Убежден | Неразрешимо Сомневается | Опровержимо Отвергает |
Нормативные модальные понятия | Обязательно | (Нормативно) безразлично | Запрещено |
Оценочные модальные понятия | Хорошо Лучше | Безразлично Равноценно | Плохо Хуже |
Модальные понятия, относящиеся к разным группам, имеют разное содержание. При сопоставлении таких понятий (например, "необходимо", "доказуемо", "убежден", "обязательно", "хорошо") складывается впечатление, что они не имеют ничего общего. Однако на самом деле, это не так. Модальные понятия разных групп выполняют одну и ту же функцию: они уточняют устанавливаемую в исходном высказывании связь, конкретизируют ее. Правила их употребления определяются только этой функцией и не зависят от содержания высказываний. Поэтому данные правила являются едиными для всех групп понятий и имеют чисто формальный характер.
Логические связи модальных высказываний изучаются модальной логикой, рассматриваемой далее.
При рассмотрении способов образования сложных высказываний из простых внутреннее строение простых высказываний во внимание не принималось. Они брались как неразложимые атомы, обладающие только одним свойством: быть истинными или ложными. Простые высказывания не случайно иногда именуются атомарными: из них, как из элементарных кирпичиков, с помощью логических связок "и", "или" и т.п. строятся разнообразные сложные ("молекулярные") высказывания.
Теперь следует остановиться на вопросе о внутреннем строении, или внутренней структуре, самих простых высказываний: из каких конкретных частей они слагаются и как эти части связаны между собой.
Сразу же нужно подчеркнуть, что простые высказывания могут разлагаться на составные части по-разному. Результат разложения зависит от цели, ради которой оно осуществляется, т.е. от той теории логического вывода (логического следования), в рамках которой анализируются такие высказывания.