Смекни!
smekni.com

Учебно-методический комплекс по дисциплине «логика» Учебно-методический комплекс (стр. 31 из 60)

Далее будет рассматриваться лишь одна разновидность простых высказываний – категорические высказывания, по традиции называемые также категорическими суждениями.

Особый интерес к категорическим высказываниям объясняется прежде всего тем, что с исследования их логических связей началось развитие логики как науки. Кроме того, высказывания этого типа широко используются в наших рассуждениях.

Категорическое высказывание – это высказывание, в котором утверждается или отрицается наличие какого-то признака у всех или некоторых предметов рассматриваемого класса.

Например, в высказывании "Все динозавры вымерли" всем динозаврам (или, что то же самое, каждому из динозавров) приписывается признак "быть вымершими". В высказывании "Некоторые динозавры летали" способность летать приписывается некоторым динозаврам. В высказывании "Все кометы не астероиды" отрицается наличие признака "быть астероидом" у каждой из комет. В высказывании "Некоторые животные не являются травоядными" отрицается травоядность некоторых животных.

Если отвлечься от количественной характеристики, содержащейся в категорическом высказывании и выражающейся словами "все" и "некоторые", то получится два варианта таких высказываний: утвердительный и отрицательный. Их структура:

"S есть Р" и "S не есть Р",

где буква S представляет имя того предмета, о котором идет речь в высказывании, а буква Р – имя признака, присущего или не присущего этому предмету.

Предмет, о котором говорится в категорическом высказывании, называется субъектом, а его признак – предикатом. Субъект и предикат именуются терминами категорического высказывания и соединяются между собой связками "есть" или "не есть" ("является" или "не является" и т.п.). Например, в высказывании "Солнце есть звезда" терминами являются имена "Солнце" и "звезда" (первый из них – субъект высказывания, второй – его предикат), а слово "есть" – связка.

Простые высказывания типа "S есть (не есть) Р" называются атрибутивными: в них осуществляется атрибуция (приписывание) какого-то свойства предмету.

Атрибутивными высказываниям противостоят высказывания об отношениях, в которых устанавливаются отношения между двумя или большим числом предметов: "Три меньше пяти", "Киев больше Одессы", "Весна лучше осени", "Париж находится между Москвой и Нью-Йорком" и т.п. Высказывания об отношениях играют существенную роль в науке, особенно в математике. Они не сводятся к категорическим высказываниям, поскольку отношения между несколькими предметами (такие, как "равно", "любит", "теплее", "находится между" и т.д.) не сводятся к свойствам отдельных предметов.

В категорическом высказывании не просто устанавливается связь предмета и признака, но и дается определенная количественная характеристика субъекта высказывания. В высказываниях типа "Все S есть (не есть) Р" слово "все" означает "каждый из предметов соответствующего класса". В высказываниях типа "Некоторые S есть (не есть) Р" слово "некоторые" употребляется в неисключающем смысле и означает "некоторые, а может быть все". В исключающем смысле слово "некоторые" означает "только некоторые", или "некоторые, но не все". Различие между двумя смыслами этого слова можно продемонстрировать на примере высказывания "Некоторые звезды есть звезды". В неисключающем смысле оно означает "Некоторые, а возможно и все звезды есть звезды" и является, очевидно, истинным. В исключающем же смысле данное высказывание означает "Лишь некоторые звезды являются звездами" и является явно ложным.

В категорических высказываниях утверждается или отрицается принадлежность каких-то признаков рассматриваемым предметам и указывается, идет ли речь обо всех этих предметах или же о некоторых из них. Возможны, таким образом, четыре вида категорических высказываний:

Все S есть Р – общеутвердительное высказывание, Некоторые S есть Р – частноутвердительное высказывание, Все S не есть Р – общеотрицательное высказывание, Некоторые S не есть Р – частноотрицательное высказывание.

Категорические высказывания можно рассматривать как результаты подстановки каких-то имен в следующие выражения с "пробелами" (многоточиями): "Все ... есть ...", "Некоторые ... есть ...", "Все ... не есть ..." и "Некоторые ... не есть ...". Каждое из этих выражений является логической постоянной (логической операцией), позволяющей из двух имен получить высказывание. Например, подставляя вместо многоточий имена "летающие" и "птицы", получаем, соответственно, следующие высказывания: "Все летающие есть птицы", "Некоторые летающие есть птицы", "Все летающие не есть птицы" и "Некоторые летающие не есть птицы". Первое и третье высказывания являются ложными, а второе и четвертое – истинными.

Аристотель истолковывал рассматриваемые четыре выражения именно как логические постоянные, не имеющие самостоятельного содержания и позволяющие из двух обладающих содержанием имен получать содержательные, являющиеся истинными или ложными высказывания.

В традиционной логике предполагалось также, что имена, подставляемые вместо многоточий (или переменных, если они используются вместо многоточий), не должны быть единичными или пустыми. Иначе говоря, высказывания типа "Платон – человек", "Все золотые горы – это горы" не относятся к категорическим в традиционном смысле, поскольку "Платон" – единичное имя, а "золотые горы" – пустое имя.

Обозначим оборот "Все ... есть ..." буквой а, оборот "Некоторые ... есть ..." буквой i (первые гласные буквы латинского слова affirmo – утверждаю), оборот "Все ... не есть ..." буквой е и оборот "Некоторые ... не есть ..." буквой о (гласные буквы латинского слова nego – отрицаю).

SaP – "Все S есть Р" – "Все жидкости упруги", SiP – "Некоторые S есть Р" – "Некоторые животные говорят", SeP – "Все S не есть Р" – "Все дельфины не есть рыбы", SoP – "Некоторые S не есть Р" – "Некоторые металлы не есть жидкости".

Отношения между терминами в четырех видах категорических высказываний представляются с помощью кругов Эйлера следующим образом:

Некоторые отношения между четырьмя видами категорических высказываний графически представляются так называемым логическим квадратом.

Противоречащие высказывания (SaP и SoP; SeP и SiP) не могут быть одновременно истинными и ложными; если одно из них истинно, то другое ложно. Так, если высказывание "Все киты дышат легкими" истинно, то высказывание "Некоторые киты не дышат легкими" ложно. Если высказывание "Некоторые медведи – не бурые" истинно, то высказывание "Все медведи – бурые" ложно.

Противные высказывания (SaP и SeP), в отличие от противоречащих, могут вместе быть ложными, но не могут быть вместе истинными. Так, высказывания "Все спортсмены – гроссмейстеры" и "Ни один спортсмен не гроссмейстер" оба ложны. Поскольку высказывание "У всех людей есть головы" истинно, то высказывание "Ни у одного человека нет головы" ложно; и если высказывание "Все металлы не являются газами" истинно, то высказывание "Все металлы – газы" ложно.

Подпротивные высказывания (SiP и SoP) не могут быть одновременно ложными, но могут быть одновременно истинными. Так, если высказывание "Некоторые овцы – хищники" ложно, то высказывание "(По меньшей мере) некоторые овцы не являются хищниками" истинно. Высказывания же "Некоторые спортсмены – футболисты" и "Некоторые спортсмены не футболисты" оба истинны.

В отношении подчинения находятся попарно высказывания SaP и SiP, SeP и SoP. Из подчиняющего высказывания логически следует подчиненное: из SaP вытекает SiP и из SeP вытекает SoP. Это означает, что из истинности подчиняющего высказывания логически следует истинность подчиненного, и из ложности подчиненного следует ложность подчиняющего. К примеру, из высказывания "Все киты являются млекопитающими" следует высказывание "Некоторые киты млекопитающие", а из высказывания "Все металлы не являются сжимаемыми" следует высказывание "Некоторые металлы не сжимаемы".

Еще раз подчеркнем, что противоречат друг другу высказывания "Все S есть Р" и "Некоторые S не есть Р" и высказывания "Все S не есть Р" и "Некоторые S есть Р". Высказывания же "Все S есть Р" и "Все S не есть Р", а также высказывания "Некоторые S есть Р" и "Некоторые S не есть Р" не противоречат друг другу.

Логические связи категорических высказываний, представляемые логическим квадратом, можно представить также в форме непосредственных умозаключений, т.е. умозаключений из одной посылки.

Противоречат друг другу высказывания "Все S есть Р" и "Некоторые S не есть Р", а также высказывания "Все S не есть Р" и "Некоторые S есть Р". Это означает, что являются правильными следующие, в частности, непосредственные умозаключения:

Все S есть Р.

Неверно, что некоторые S не есть Р.

Из высказывания "Все совы – птицы" непосредственно вытекает высказывание "Неверно, что некоторые совы не являются птицами".