Смекни!
smekni.com

Учебно-методический комплекс по дисциплине «логика» Учебно-методический комплекс (стр. 9 из 60)

Схема данного рассуждения проста: если есть первое, то есть второе; имеет место первое; значит, есть и второе.

Принципиально важным является то, что, о чем бы мы ни рассуждали по такой схеме – о Земле и маятниках, о человеке или химических элементах, о мифах или богах, рассуждение останется правильным.

Чтобы убедиться в этом, достаточно подставить в схему вместо слов "первое" и "второе" два утверждения с любым конкретным содержанием.

Изменим несколько данную схему и будем рассуждать так: если есть первое, то имеется второе; имеет место второе; значит, есть и первое.

Например:

Если идет дождь, земля мокрая; земля мокрая; следовательно, идет дождь.

Этот вывод, очевидно, неправилен. Верно, что всякий раз, когда идет дождь, земля мокрая. Но из этого условного утверждения и того факта, что земля мокрая, вовсе не вытекает, что идет дождь. Земля может оказаться мокрой и без дождя, ее можно намочить, скажем, из шланга, она может быть мокрой после таяния снега и т.д.

Еще один пример рассуждения по последней схеме подтвердит, что она способна приводить к ложным заключениям:

Если у человека повышенная температура – он болен; человек болен; значит, у него повышенная температура.

Однако такое заключение не вытекает с необходимостью: люди с повышенной температурой действительно больны, но далеко не у всех больных такая температура.

Отличительная особенность правильного вывода заключается в том, что от истинных посылок он всегда ведет к истинному заключению.

Этим объясняется тот огромный интерес, который логика проявляет к правильным выводам. Они позволяют из уже имеющегося знания получать новое знание, и притом с помощью "чистого" рассуждения, без всякого обращения к опыту, интуиции и т.п. Правильное рассуждение как бы разворачивает и конкретизирует наши знания. Оно дает стопроцентную гарантию успеха, а не просто обеспечивает ту или иную – быть может, и высокую – вероятность истинного заключения.

Если посылки, или хотя бы одна из них, являются ложными, правильное рассуждение может давать в итоге как истину, так и ложь. Неправильные рассуждения могут от истинных посылок вести как к истинным, так и к ложным заключениям. Никакой определенности здесь нет. С логической необходимостью заключение вытекает только в случае правильных, обоснованных выводов.

Логика занимается, конечно, не только связями утверждений в правильных выводах, но и другими проблемами. В числе последних – смысл и значение выражений языка, различные отношения между понятиями, определение понятий, вероятностные и статистические рассуждения, софизмы и парадоксы и др. Но главная и доминирующая тема формальной логики – это, несомненно, анализ правильности рассуждения, исследование "принудительной силы речей", как говорил основатель этой науки – древнегреческий философ и логик Аристотель.

Формальная логика, как уже говорилось, отделяет правильные способы рассуждения от неправильных и систематизирует первые.

Своеобразие формальной логики связано прежде всего с ее основным принципом, в соответствии с которым правильность рассуждения зависит только от его логической формы.

Самым общим образом форму рассуждения можно определить как способ связи входящих в это рассуждение содержательных частей.

Основной принцип формальной логики предполагает – и это следует специально подчеркнуть, что каждое наше рассуждение, каждая мысль, выраженная в языке, имеет не только определенное содержание, но и определенную форму. Предполагается также, что содержание и форма отличаются друг от друга и могут быть разделены. Содержание мысли не оказывает никакого влияния на правильность рассуждений, и поэтому от него следует отвлечься. Для оценки правильности мысли существенной является лишь ее форма. Ее необходимо выделить в чистом виде, чтобы затем на основе такой "бессодержательной" формы решить вопрос о правильности рассматриваемого рассуждения.

Как известно, все предметы, явления и процессы имеют как содержание, так и форму. Наши мысли не являются исключением из этого общего правила. То, что они обладают определенным, меняющимся от одной мысли к другой содержанием, известно каждому. Но мысли имеют также форму, что обычно ускользает от внимания.

Смысл понятия логической формы лучше всего раскрыть на примерах.

Сравним два высказывания: "Все вороны – птицы", "Все шахматисты – гроссмейстеры".

По содержанию они совершенно различны, к тому же первое является истинным, а второе ложным. И тем не менее сходство их несомненно. Это сходство, а точнее говоря, тождество, в их строении, форме. Чтобы выявить такое сходство, нужно отвлечься от содержания высказываний, а значит и от обусловленных им различий. Оставим поэтому в стороне ворон и шахматистов, птиц и гроссмейстеров. Заменим все содержательные компоненты высказываний латинскими буквами, скажем S и Р, не несущими никакого содержания. В итоге получим в обоих случаях одно и то же:

"Все S есть Р".

Это и есть форма рассматриваемых высказываний. Она получена в результате отвлечения от конкретного их содержания. Но сама эта форма имеет все-таки некоторое содержание. Из нее мы узнаем, что у всякого предмета, обозначаемого буквой S, есть признак, обозначаемый буквой Р. Это не особенно богатое, но все-таки содержание, "формальное содержание".

Этот простой пример хорошо показывает одну из особенностей подхода формальной логики к анализу рассуждений – его высокую абстрактность.

В самом деле, все началось с очевидной мысли, что утверждения о воронах, которые являются птицами, и о шахматистах, сплошь являющихся гроссмейстерами, совершенно различны. И если бы не цели логического анализа, на этом различии мы и остановились бы, не увидев ничего общего между высказываниями "Все вороны – птицы" и "Все шахматисты – гроссмейстеры".

Отвлечение от содержания и выявление формы привело нас, однако, к прямо противоположному мнению: рассматриваемые высказывания имеют одну и ту же логическую форму и, следовательно, они полностью совпадают. Начав с мысли о полном различии высказываний, мы пришли к выводу об абсолютной их тождественности.

Рассмотрим далее два более сложных высказывания: "Если число делится на 2, то оно четное", "Если сейчас ночь, то сейчас темно".

Для выявления логической формы этих высказываний подставим вместо их содержательных компонентов слова "первое" и "второе", не несущие конкретного содержания. В результате получим, что оба эти высказывания имеют одну и ту же логическую форму:

"Если первое, то второе", т.е. каждое из них устанавливает условную связь, выражаемую словами "если, то", между двумя ситуациями, обозначаемыми словами "первое" и "второе". Если вместо последних слов использовать буквенные переменные, скажем, А и В, получим:

"Если А, то В".

Это и есть логическая форма данных сложных высказываний.

Легко понять, что такое пространственная форма. Скажем, форма здания характеризует не то, из каких элементов оно сложено, а только то, как эти элементы связаны друг с другом. Здание одной и той же формы может быть и кирпичным, и железобетонным.

Достаточно просты также многие непространственные представления о форме. Говорят, например, о форме классического романа, предполагающего постепенную завязку действия, кульминацию и, наконец, развязку. Все такие романы, независимо о их содержания, сходны в своей форме, способе связи содержательных частей.

В сущности, не намного более сложным для понимания является и понятие логической формы. Наши мысли слагаются из некоторых содержательных частей, как здание из кирпичей, блоков, панелей и т.п. Эти "кирпичики" мысли определенным образом связаны друг с другом. Способ их связи и представляет собой форму мысли.

Для выявления формы надо отвлечься от содержания мысли, заменить содержательные ее части какими-нибудь пробелами или буквами. Останется только связь этих частей. В обычном языке она выражается словами: "все ... есть ...", "некоторые ... есть...", "если..., то...", "... и ...", "... или ...", "неверно, что ..." и т.п.

История логики охватывает около двух с половиной тысячелетий. "Старше" формальной логики, пожалуй, только философия и математика.

В длинной и богатой событиями истории развития логики отчетливо выделяются два основных этапа. Первый – от древнегреческой логики до возникновения во второй половине прошлого века современной логики. Второй – с этого времени до наших дней.

На первом этапе, обычно называемом традиционной логикой, формальная логика развивалась очень медленно. Обсуждавшиеся в ней проблемы мало чем отличались от проблем, поставленных еще Аристотелем. Это дало повод немецкому философу И.Канту (1724-1804) в свое время придти к выводу, что формальная логика является завершенной наукой, не продвинувшейся со времени Аристотеля ни на один шаг.

Кант не заметил, что еще с XVII в. стали назревать предпосылки для научной революции в логике. Именно в это время получила ясное выражение идея представить доказательство как вычисление, подобное вычислению в математике.

Эта идея связана главным образом с именем немецкого философа и математика Г.Лейбница (1646-1716). По Лейбницу, вычисление суммы или разности чисел осуществляется на основе простых правил, принимающих во внимание только форму чисел, а не их смысл. Результат вычисления однозначно предопределяется этими, не допускающими разночтения правилами, и его нельзя оспорить. Лейбниц мечтал о времени, когда умозаключение будет преобразовано в вычисление. Когда это случится, споры, обычные между философами, станут так же невозможны, как невозможны они между вычислителями. Вместо спора они возьмут в руки перья и скажут: "Будем вычислять".