По всей вероятности, рентгеновское излучение Крабовидной туманности, подобно радио- и большей части оптического излучения этой туманности, имеет магнитотормозную природу. Окончательно доказать это предположение можно будет только в результате более подробного исследования, в частности, определения спектра излучения или выявления его поляризации. Но каков бы тут ни был ответ, обнаружение рентгеновского излучения от разлетающейся оболочки сверхновой звезды имеет выдающееся значение.
Гамма- и рентгеновская астрономия только что зародились; в этой области, если не говорить о приеме рентгеновского излучения Солнца, проведено всего несколько экспериментов. Но уже эти первые шаги свидетельствуют о том, что появился новый, весьма перспективный метод изучения Вселенной. Более того, возможно, что в ближайшие годы гамма- и рентгеновская астрономия окажут неоценимые услуги для развития астрономии в целом.
Это открытие, а также ряд других результатов, выдвинули рентгеновскую астрономию на «передний край» астрономии сегодняшнего дня. Можно полагать, что уже в ближайшие годы рентгеновская астрономия будет бурно развиваться, а затем станет равноправным «партнером» с оптической и радиоастрономией.
Глава 2. Инфракрасная астрономия на воздушных шарах.
Телескопы, поднятые на большую высоту, регистрируют излучение, которое никогда не достигает поверхности Земли. Выполненные с их помощью наблюдения инфракрасного излучения указывают на то, что облака, окружающие Венеру, состоят из кристаллов льда.
Земная атмосфера экранирует поверхность Земли от глубин космического пространства. Это имеет как положительную, так и отрицательную стороны. С одной стороны,— это спасение для организмов, развивающихся на Земле. Азот, кислород и озон атмосферы поглощают ультрафиолетовое излучение и рентгеновские лучи, экранируя таким образом Землю от жестких компонент коротковолновой части электромагнитного спектра Солнца. Помимо этого, водяные пары и углекислый газ поглощают длинноволновую часть инфракрасного излучения, испускаемого Землей, и тем самым поддерживают умеренную температуру ее поверхности. С другой стороны, атмосфера не пропускает большую часть излучения, которое приносит человеку сведения о космосе. Возможности расположенных на Земле телескопов весьма ограничены. Они могут регистрировать лишь излучение, которое проходит через так называемые «окна» прозрачности в атмосфере: одно окно в видимой области спектра, другое в радиообласти, и несколько в инфракрасной области .
В последнее время астрономы предприняли ряд попыток преодолеть атмосферную «изоляцию». На самолетах и воздушных шарах они подняли астрономические приборы в верхние слои атмосферы; с помощью ракет и других космических кораблей они послали свои инструменты за ее пределы. Уже сейчас наблюдения, которые удалось сделать благодаря применению этой новой техники, значительно расширили наши астрономические познания. Ракеты оказались особенно полезными для исследования ультрафиолетового и рентгеновского излучения. Оборудование, необходимое для регистрации этих лучей, малогабаритное и малоинерционное. Для исследований же инфракрасной области спектра наиболее пригодными оказались воздушные шары. Медленность их полета позволяет в течение длительного времени проводить наблюдения почти в неподвижном состоянии, что необходимо для регистрации излучения больших длин волн (и следовательно малых энергий). Кроме того, на воздушных шарах можно поднимать сравнительно большие телескопы и спектрометры на такую высоту, что под ними остается 99,9% всех водяных паров, уменьшающих прозрачность земной атмосферы.
Поэтому не откроют ли нам наблюдения в инфракрасных лучах тайну скрытого облаками ядра Галактики? По моему мнению, отвечая на эти и многие другие вопросы, исследования космического инфракрасного излучения могут значительно расширить наши астрофизические познания.
Группа, работавшая в Университете Джона Гопкинса, впервые занялась исследованиями инфракрасного излучения на воздушных шарах в 1956 г., когда Ширли Сильвермен, Фрэнк Б. Изаксон и Малькольм Росс из Научно-исследовательского отдела Военно-морских сил США обратились к нам с вопросом, нет ли у нас какого-нибудь астрономического проекта, для осуществления которого можно было бы использовать двухместный высотный воздушный шар Военно-морских сил США. Нашей первой мыслью было исследовать инфракрасное излучение Солнца, отраженное Марсом и Венерой. Сферическая герметизированная гондола воздушного шара Военно-морских сил США — это, конечно, не самое подходящее место для установки телескопа, оборудованного спектрометром. Однако перспективы наблюдений были столь заманчивы, что вскоре мы придумали способ, как осуществить эти наблюдения.
Мы решили приспособить для наших целей телескоп шмидтовского типа: рефлектор с прозрачной корректирующей пластиной. Главное зеркало телескопа имело диаметр 40,6 см, хотя фактически использовалось только 30,5 см. Чтобы придать зеркалу и корректирующей пластине (имевшей 30,5 см в диаметре) устойчивость к растяжениям и сжатиям, возникающим при изменении температуры, они были изготовлены из плавленого кварца.
Благодаря такой системе достаточно было вручную грубо нацелить тяжелый телескоп на нужную планету, после чего он мог сдвигаться относительно «мишени» на целых 3°. Изображение планеты перемещалось при этом случайным образом по фокальной поверхности главного зеркала. Однако к этому моменту цель уже «поймана» сервоуправляемым оптическим реле. Это реле неизменно следит за перемещающимся первичным изображением и создает вторичное изображение, которое уже не сдвигается относительно неподвижной точки карданова подвеса более чем на 3". Это вторичное изображение отражается затем управляемым зеркалом и фокусируется на входной щели спектрометра.
На первом месте исследований на пилотируемых воздушных шарах стояли исследования инфракрасного излучения Марса. В 1958 г. было противостояние Марса, и он находился близко к Земле, но провести полет в это благоприятное для наблюдений время не удалось, в основном из-за неисправности полиэтиленовой оболочки воздушного шара. Лишь в конце ноября 1959 г. воздушный шар, пилотируемый Россом, с К. В. Муром на борту в качестве наблюдателя, успешно поднял нашу аппаратуру на высоту 24 384 м. К этому времени противостояние Марса уже давно кончилось, и объектом наших исследований стала Венера. По нашим оценкам, в пространстве между воздухоплавателями и их мишенью содержалось не более 0,1% всех водяных паров, присутствующих в атмосфере Земли. Когда телескоп был направлен на Венеру, наблюдатели зарегистрировали линии поглощения в спектре инфракрасного излучения Солнца, отраженного Венерой. Расположение линий поглощения в полученном спектре указывало на поглощение водяным паром. Однако наблюдавшееся поглощение не превышало 5% от фона, создаваемого отраженным солнечным излучением, а пределы экспериментальных ошибок составляли ±4%. Эта неопределенность возникла из-за колебаний гондолы, которые были вызваны как деятельностью ее обитателей, так и, главным образом, ненормальными движениями воздушного шара — столь сильными, что они едва не погубили весь эксперимент. Замечательно, что Россу и Муру удалось получить хоть какие-нибудь результаты, и мы были очень довольны, что наша аппаратура работала так хорошо. Нужно сказать, однако, что колебания зарегистрированного излучения были столь велики, что ставили наше открытие под сомнение.
К счастью для прогресса астрономии, Мартин Шварцшильд, пионер в области подъема телескопов на воздушных шарах, добился значительных успехов. В 1963 г. инфракрасная аппаратура, установленная на его автоматическом стратостате «Стратоскоп II», обнаружила водяной пар в атмосфере Марса. Поэтому, когда в феврале 1964 г. вся аппаратура была вновь подготовлена для полета, и снова избрали в качестве мишени Венеру.
«Солнцечувствительная» следящая система, сконструированная нами для дневных полетов, могла лишь приблизительно направить телескоп на Венеру. Для того чтобы привести аппарат в положение, необходимое для наблюдений, требовалась вторая, более точная следящая система. Такой прибор, получивший название «Бета-ро система», был создан Мурком Боттема. Прибор можно было запрограммировать заранее на все время полета, причем он мог сам исправить любую ошибку в программировании. Основную часть датчика составлял светочувствительный элемент, наводившийся на Солнце и укрепленный под углом к длинной оси телескопа, равным углу между Солнцем и Венерой на большом круге небесной сферы. Изменения этого угла, возникающие в результате перемещения места наблюдения по Земле, пренебрежимо малы. Кроме того, в выбранный нами для полета день Венера должна была находиться в идеальном положении для наблюдений, и этот угол мало менялся в зависимости от времени дня.
Таким образом, фактически один элемент в нашей системе датчиков был постоянным .
Солнечный датчик был все время направлен на Солнце, но перед ним помещалась призма, которая могла поворачиваться вокруг оси, параллельной длинной оси телескопа. В отличие от угла большого круга, угол поворота призмы менялся в зависимости от географического положения воздушного шара и времени дня: он должен был быть задан для данного времени и места нахождения воздушного шара, которые можно предсказать, зная направление и скорость ветра в верхних слоях атмосферы. Если в прогнозе будет сделана ошибка, то вращение призмы вокруг оси создаст корректирующую развертку. В небесной геометрии Венера должна лежать на дуге круга, радиус которого определяется углом на большом круге между Солнцем и Венерой, независимо от географического положения прибора. Это обстоятельство было использовано при конструировании системы точного наведения. Если к тому моменту, когда воздушный шар достигнет высоты, на которой должны производиться наблюдения, его географические координаты не будут совпадать с расчетными, то вращающаяся призма будет приведена в движение. Это в свою очередь заставит сервомеханизмы, управляющие телескопом, вращать его в режиме кругового поиска до тех пор, пока Венера не окажется прямо перед следящим телескопом, который контролирует оптическое реле телескопа.