Смекни!
smekni.com

Глава Способы активизации познавательной деятельности младших школьников5. (стр. 6 из 10)

Генетический подход заключается в том, что житейские, эмпирические понятия и представления учащихся «переводятся» на язык математики и закрепляются в форме математических понятий. Такой процесс называется математизацией эмпирического материала (математизацией) и соответствует возможностям младших школьников.

В практике обучения организация деятельности учащихся по математизации и управление ею осуществляются учителем. Однако при рациональной методике учащиеся в состоянии не только усваивать результаты математизации, но и накапливать опыт ее осуществления. Понятно, что такая методика требует, чтобы вопросы, включенные в программу по математике, имели многочисленные (исходя из жизненного опыта детей) интерпретации в реальном мире. Исходя из этих позиций, в программу для начальной школы может быть включен весьма необычный с точки зрения традиций этой школы математический материал. Примером может служить содержание программы, по которой обучались воспитанники одного из детских садов Бельгии[28], математический материал для занятий с детьми 6 – 10 лет, разработанный Р.Ф. Соболевским[29].

4. Программа по математике должна предусматривать также овладение учащимися математическим языком – средством математизации. Математический язык учащихся начальных классов с синтаксической точки зрения не должен отличаться от языка старшеклассников. Например, предложение · + ·· = 3 («к одному яблоку прибавить два яблока...») не является математическим ни для математика, ни для старшеклассника, ни для ученика I класса. Что же касается смыслового значения математических терминов, знаков, используемых в младших классах, то оно, конечно, беднее соответствующих языковых средств учащихся старших классов, однако не противоречит ему.

Остановимся на более характерных особенностях действующей программы по математике для начальной школы. В содержании программы можно выделить арифметический, геометрический и алгебраический материал, а также материал, связанный с изучением величин. Такое разделение условно, поскольку в младших классах в отличие от средних и старших ни арифметика, ни геометрия, ни алгебра не являются систематическими курсами. Соответствующие понятия не образуют строгой логической системы[30].

Рассмотрим особенности арифметического материала. Этот материал занимает в программе центральное место. Целью его изучения является знакомство учащихся с понятием числа – целыми неотрицательными числами и обыкновенными дробями. В средних и старших классах это важнейшее понятие последовательно расширяется.

Из курса математики для факультета педагогики и методики начального обучения (в дальнейшем для краткости будем называть его вузовским курсом математики) известно, что существуют два подхода к определению целых неотрицательных чисел – количественный и аксиоматический[31]. В начальных классах реален первый из названных. Понятие натурального числа вводится через рассмотрение свойств конечных множеств. Множества служат основой для формирования у учащихся представлений об упорядоченности целых неотрицательных чисел, арифметических операциях.

Важное место в курсе математики начальных классов занимают законы арифметических операций: коммутативности и ассоциативности сложения и умножения, дистрибутивности умножения относительно сложения.

Арифметический материал изучается концентрически. Поскольку он составляет основу программы по математике, то элементы геометрии и алгебры распределены по соответствующим концентрам. Необходимость знакомства учащихся с понятием числа по концентрам выявляется при логико-дидактическом анализе арифметического материала. В нем можно выделить два основных элемента – нумерацию и арифметические операции.

Рассмотрим сначала логическую последовательность изучения нумерации целых неотрицательных чисел. При этом будем исходить из того, что нумерация изучается в десятичной позиционной системе счисления.

1. Нумерация чисел первого десятка (О, 1, ..., 9). Изучается «алфавит» десятичной системы счисления – написание и название цифр.

2. Нумерация чисел второго десятка (11, 12, ..., 19). Названия этих чисел образуются по особому правилу: 11 – «один-на-дцать», 12 – «две-на-дцать», ..., 19 – «девять-на-дцать». При изучении нумерации используются понятие «десяток» и знания, полученные в концентре 1.

3. Нумерация круглых десятков (20, 30, ..., 90). Названия этих чисел имеют сходство: «два-дцать», «три-дцать» (вместе с тем «сорок», «девяносто»). Для их нумерации используются понятие «десяток» и знания, полученные в концентре 1.

4. Нумерация остальных двузначных чисел (21, 22, ..., 99). Названия этих чисел образуются из двух слов – сначала называется число десятков, а затем число единиц. Для их нумерации используются знания, полученные в концентрах 1 и 3.

Порядок изучения концентров 1, 3, 4 должен строго соблюдаться – сначала 1, затем 3, затем 4. Изучать концентры 2 и 3 можно в разной последовательности.

5. Нумерация круглых сотен (100, 200, ..., 900). Названия этих чисел имеют сходство: «сто», «две-сти», «три-ста», ..., «девять-сот».

Для изучения нумерации этих чисел используются понятие «сотня» (разряд сотен) и знания, полученные в концентре 1.

6. Нумерация остальных трехзначных чисел (101, 102, ... 213, ..., 999). Здесь используются знания, полученные в концентрах 1 – 5.

7. Нумерация чисел класса тысяч (1000 – 999999). Вводятся понятия «класс» и «тысяча». Обобщаются знания о разрядах.

Используются знания, полученные во всех предыдущих концентрах.

8. Нумерация чисел свыше 999999. Сообщаются названия новых классов (миллион, миллиард, триллион и т. д.). Устная и письменная нумерации этих чисел производятся по уже известным правилам.

Итак, логика изучения нумерации целых неотрицательных чисел определена. Однако учащиеся должны усваивать нумерацию в органической связи с изучением арифметических операций. Поэтому с методической точки зрения концентры 1 – 8 далеко не равноценны. В самом деле, при изучении нумерации чисел в пределах десяти, например, учащиеся знакомятся с операцией сложения на множестве чисел первого десятка. Процесс усвоения табличного сложения (в пределах 10) весьма сложный и длительный. Однако знание учащимися таблицы сложения существенно облегчает изучение операции сложения в концентрах 3 и 5: эти суммы – 20 + 30, 200 + 300 рассматриваются как 2 дес. + 3 дес., 2 сот. + 3 сот., т. е. как суммы однозначных чисел. Поэтому на изучение нумерации круглых десятков и сотен отводятся считанные уроки.

Таким образом, в программе по математике выделяются более крупные концентры, чем 1 – 8.

Рассмотрим несколько примеров концентрического построения программ по математике для начальной школы.

В дореволюционной программе по математике для начальной школы (конец XIX в.) выделялись три концентра: числа первого десятка, числа первой сотни, многозначные числа. В первом концентре усваивалась нумерация и смысл всех четырех арифметических операций. Запоминались табличные случаи сложения и умножения (вычитания и деления) в пределах десяти. Во втором концентре учащиеся получали знания о нумерации чисел в пределах ста. Здесь же усваивались таблицы сложения и умножения, приемы устного внетабличного сложения и вычитания, умножения и деления в пределах ста. В третьем – вместе с нумерацией многозначных чисел (больших ста, меньших миллиарда) изучались приемы письменного сложения, вычитания, умножения (в столбик) и деления (углом)[32].

В советской послевоенной программе (1945 г.) учебный материал по математике был распределен по пяти концентрам: числа первого десятка, числа второго десятка, числа в пределах ста, тысячи, многозначные числа. В первом концентре параллельно с нумерацией изучались табличные случаи сложения и соответствующие случаи вычитания в пределах десяти. Во втором концентре завершалось усвоение учащимися таблицы сложения и начиналась работа над таблицей умножения и соответствующими случаями деления в пределах 20. В третьем концентре завершалось изучение таблицы умножения. Отрабатывались приемы устного сложения и вычитания, умножения и деления в пределах ста. В четвертом концентре учащиеся усваивали приемы письменного выполнения всех четырех арифметических действий. В последнем концентре эти приемы отрабатывались при выполнении действий над многозначными числами (до триллиона)[33].

В программе, утвержденной МП РСФСР в 1968 г., арифметический материал группировался по четырем концентрам: «Десяток», «Сотня», «Тысяча», «Многозначные числа».

В концентре «Десяток» учащиеся усваивали табличные случаи сложения (соответствующие случаи вычитания); в концентре «Сотня» – таблицу сложения в целом, таблицу умножения (соответствующие случаи деления), приемы устного сложения, вычитания, умножения и деления в пределах ста; в концентре «Тысяча» – приемы письменного сложения и вычитания; в концентре «Многозначные числа» – приемы письменного умножения и деления на множестве чисел до миллиарда[34].

В программе для четырехлетней начальной школы, утвержденной МП РСФСР в 1986 г., по существу выделено пять концентров: числа первого десятка, числа второго десятка, числа в пределах ста, числа в пределах тысячи, многозначные числа[35].

В первом концентре параллельно с изучением нумерации раскрывается смысл операций сложения и вычитания, учащиеся запоминают таблицу сложения и соответствующие случаи вычитания в пределах десяти. Во втором концентре завершается усвоение учащимися таблицы сложения, в третьем — отрабатываются приемы устного сложения и вычитания. Наряду с этим учащиеся должны овладеть приемами письменного выполнения этих действий (в столбик). Вычисления в столбик они выполняют в наиболее сложных случаях. Здесь же учащиеся знакомятся с умножением и делением, усваивают таблицу умножения, приемы устного внетабличного умножения и деления. При изучении чисел в пределах тысячи вводятся приемы письменного умножения (в столбик) и деления (углом). В последнем концентре навыки устных и письменных вычислений обобщаются для действий над многозначными числами (до миллиона).