Смекни!
smekni.com

работа по методике преподавания математики небольшая по объему самостоятельная работа с элементами научно-методологического исследования. (стр. 10 из 17)

1. Смогоржевский А.С. Линейка в геометрических построениях. - М.: Гостехиздат, 1957.

2. Петерсон Ю. Методы и теория решения геометрических задач на построение с приложением более 400 задач. - Харьков: Книжный магазин Кервин и К , 1883.

3. Березина Л.Ю., Мельникова Н.Б. и др. Геометрия в 7-9 классах: Методические рекомендации к преподаванию курса геометрии по учебному пособию А.В. Погорелова. - М.: Просвещение, 1990.

4. Мазаник А.А. Задачи на построение по геометрии в восьмилетней школе. - Минск: «Народна Асвета», 1967.

5. Преподавание алгебры и геометрии в школе: Пособие для учителя / Сост. О.А. Боковнев. - М.: Просвещение, 1982.

6. Зетель С.И. Геометрия циркуля и геометрия линейки. - М.: Учпедгиз, 1957.

75. Методика формирования умений решать основные задачи на построение в курсе планиметрии

Психолого-педагогические основы преподавания планиметрии. Задачи на построение в системе задач курса геометрии. Теория геометрических построений. Основные методы решения задач на построение. Анализ применения основных методов решения задач на построение к задачам школьного курса. Основные задачи на построе­ние. Образцы оформления решений.

Подбор системы задач, позволяющий сформировать навыки решения задач на построение.

Литература:

Основная: [5], [2].

Дополнительная: [51], [2], [66], [108], [104], [45], [62].

1. Смогоржевский А.С. Линейка в геометрических построениях. - М.: Гостехиздат, 1957.

2. Петерсон Ю. Методы и теория решения геометрических задач на построение с приложением более 400 задач. - Харьков: Книжный магазин Кервин и К , 1883.

3. Жохов В.И., Крайнева Л.Б., Карташова Г.Д. Геометрия, 7-9. Кн. для учителя. – М.: Просвещение, 2004.

4. Мазаник А.А. Задачи на построение по геометрии в восьмилетней школе. - Минск: «Народна Асвета», 1967.

5. Преподавание алгебры и геометрии в школе: Пособие для учителя / Сост. О.А. Боковнев. - М.: Просвещение, 1982.

76. Методика обучения решению геометрических задач с помощью координатного метода в основной (старшей) школе

Координатный метод: специфические особенности, компоненты метода. Место координатного метода в обучении геометрии. Этапы изучения координатного метода в школе.

Словарь перевода с языка геометрии на язык координат.

Составление системы задач для обучения учащихся решению задач с помощью координатного метода. Разработка фрагментов уроков, поясняющих применение предложенной системы задач в обучении геометрии. Образцы оформления решений.

Литература:

Основная: [5], [7] [99].

Дополнительная: -

1. Саранцев Г.И. Упражнения в обучении математике. – М.: Просвещение, 1995. – 240 с.-(Библиотека учителя математики).

2. Учебники геометрии для основной (старшей) школы.

77. Методика обучения решению геометрических задач с помощью векторного метода в основной (старшей) школе

Векторный метод: специфические особенности, компоненты метода. Место векторного метода в обучении геометрии. Этапы изучения векторного метода в школе.

Словарь перевода с языка геометрии на язык векторов.

Система задач для обучения учащихся решению задач с помощью векторного метода. Разработка фрагментов уроков, поясняющих применение предложенной системы задач в обучении геометрии. Образцы оформления решений.

Литература:

Основная: [5], [7] [99], [100].

Дополнительная: -

1. Попов Ю.И. Векторы в школьном курсе геометрии: Метод. Пособие. – Калининград: Янтар. Сказ, 1998. – 64 с. – (Математика старшекласснику и абитуриенту).

2. Кушнир И.А. Векторные методы решения задач. – Киев: Изд-во «Обериг», 1994. – 208 с.

3. Учебники геометрии для основной (старшей) школы.

78. Методика проведения факультативного курса «Замечательные точки и линии в треугольнике»

Факультативные занятия: их роль и место в системе курса математики средней школы; психолого-педагогические основы организации факультативных занятий в 7-9-х классах. Анализ материала, содержащегося в учебниках «Геометрия 7-11» по теме факультативного курса.

Разработка теоретического материала по теме «Замечательные точки и линии в треугольнике», дополняющего школьную программу. Подбор и систематизация задач по названной теме.

Литература:

Основная: [5], [7], [99].

Дополнительная: [109], [202], [113].

1. Адамар Ж. Элементарная геометрия. - М.: Учпедгиз, 1962.

2. Берже М. Геометрия. Т. 1. - М.: Мир, 1984.

3. Берже М., Берри Ж.П. Паннсю П., Сей-Реймон К., Задачи по геометрии. - М.: Мир, 1989.

4. Болтянский В.Г, Сидоров Ю.В., Шабунин М.И. Лекции и задачи по элементарной математике. - М.: Наука, 1971.

5. Жохов В.И., Крайнева Л.Б., Карташова Г.Д. Геометрия, 7-9. Кн. для учителя. – М.: Просвещение, 2004.

6. Туманов С.И. Поиски решения задачи. - М.: Просвещение, 1969.

7. Зетель С.И. Новая геометрия треугольника. - М.: Учпедгиз, 1962.

79. Геометрические места точек и методика обучения

решению задач на построение методом пересечений.

Место данной темы в курсе геометрии основной школы. Психолого-педагогические основы обучения решению геометрических задач на построение учащихся 7-9 классов. Этапы обучения решению задач на построение в основной школе. Особенности методики обучения решению задач на построение. Основные виды геометрических мест точек, решение теоретических задач на их отыскание, необходимость доказательства при этом двух взаимно обратных теорем (привести подробные доказательства). Задачи на построение, решаемые методом пересечений (привести решения таких задач для уроков и внеклассных занятий). Авторский вариант системы задач, упражнений, творческих заданий и конспектов уроков по рассматриваемой теме.

Литература:

Основная: -

Дополнительная [173]

1. Костовский А.Н. Геометрические построения одним циркулем. М.: Наука 1984.

2. Аргунов Б.И., Балк М.Б. Геометрические построения на плоскости. М.: Просвещение, 1957.

3. Атанасян Л.С., Бутузов В.Ф. и др. Геометрия 7-9. М.: Просвещение, 2000.

4. Атанасян С.Л. Задачник-практикум по конструктивной геометрии. М. МГЗПИ, 1983.

5. Методика преподавания геометрии в старших классах средней школы. Под редакцией А.И.Фетисова. М.: Просвещение, 1967.

6. Пойа Д. Как решать задачу. М., Учпедгиз,1961.

7. Преподавание геометрии в 6-8 классах.: Сб. статей / Сост. В.А.Гусев. М.: Просвещение, 1979.

8. В.Н.Литвиненко и др. Геометрия 8. Тематический сборник задач. М.: Вербум-М, 2002.

9. В.Н.Литвиненко и др. Геометрия 7. Тематический сборник задач. Выпуск 3 М.: Вербум-М, 2000.

79. Возможности применения оригами при изучении геометрии в школе

Дидактические принципы наглядности и самостоятельности в обучении геометрии.

Искусство оригами и геометрия. Геометрический материал, методические особенности изучения которого традиционно предусматривают использование перегибаний листа бумаги. Типология геометрических задач, которые можно решать методами оригами.

Рекомендации для учителей, работающих по действующим учебникам, по возможному использованию «геометрии листа бумаги» на уроках геометрии и во внеклассной работе с учащимися основной (старшей) школы.

Литература:

Основная: [5], [7].

Дополнительная: [145], [46].

1. Афонькин С.Ю, Афонькина Е.Ю. Уроки оригами в школе и дома. – М.: Изд-во «Аким», 1998.

2. Белим С.Н. Задачи по геометрии, решаемые методами складывания (оригами). – М.: Изд-во «Аким», 1998.-(Приложение к журналу «Оригами»)

3. Оригами помогает геометрии // Под ред. Н.И. Чиканцевой. - М.: МПГУ,1995.

80. Методика проведения первых уроков стереометрии

Психолого-педагогические основы обучения геометрии учащихся старшей профильной школы. Методические особенности проведения первых уроков стереометрии.

Анализ стереометрического материала для первых уроков геометрии в учебниках для старшей школы. Отбор содержания первых уроков геометрии. Выбор форм, методов и средств обучения.

Разработка нескольких конспектов первых уроков геометрии для 10-го класса (хотя бы одного профиля).

Литература:

Основная: [93].

Дополнительная: [130], [147].

1. Первые уроки стереометрии. Пособие для учителей / Сост. И.Л. Кукало. – М.: Изд-во «Школьная пресса», 2003.

2. Паповский В.М., Пульцин Н.М. Углубленное изучение геометрии в 10 классе: Кн. для учителя. – М.: Просвещение, 1999.

3. Учебники геометрии для 10 класса.

81. Систематизация знаний и умений учащихся при изучении взаимного расположения прямых и плоскостей в пространстве

Психолого-педагогические особенности учебной деятельности учащихся в процессе обобщения и систематизации знаний. Приемы мыслительной деятельности учащихся при обобщении и систематизации учебного материала на уроках геометрии старшей школы.

Урок обобщения и систематизации знаний: цели, структура, требования.

Основной теоретический материал по темам «Параллельность в пространстве», «Перпендикулярность в пространстве», «Скрещивающиеся прямые». Разработка конспектов уроков систематизации и обобщения знаний.

Литература:

Основная: [5], [7], [66],[93].

Дополнительная: [147], [220]

1. Гусев В.А. Психолого-педагогические основы обучения математике. – М.: ООО «Изд-во «Вербум-М», ООО «Издательский центр «Академия», 2003.

2. Саранцев Г.И. Упражнения в обучении математике. – М.: Просвещение, 1995. – (Библиотека учителя математики)

3. Санина Е.И. Обобщающее повторение начал стереометрии// Математика в школе, 1993. - №6. – С. 12-14.

4. Учебники геометрии для старшей школы.

82. Различные подходы к определению понятия многогранника в школьных учебниках

Понятие как логическая форма мышления.

Объем и содержание понятия «многогранник». Виды определений.

Определение многогранника в современных учебниках геометрии для старшей школы.

Разработка конспектов первого урока темы «Многогранники», реализующих различные подходы к определению понятия многогранника.

Литература:

Основная: [5], [7], [66], [93].

Дополнительная: [130], [193].

1. Александров А.Д. Что такое многогранник? // Математика в школе. – 1981. - № 1,2.

2. Цукарь А.Я. Развитие пространственного воображения. Задания для учащихся. – Спб.: Издательство СОЮЗ, 2000.