Все волокна из синтетических полимеров производят в форме непрерывных нитей. В отличие от целлюлозных, эти полимеры могут быть легко расплавлены.
Синтетические волокна не следует рассматривать как заменители природных или же как "искусственные" волокна; у них иные свойства и в некоторых отношениях они превосходят природные волокна. Существуют много типов синтетических волокон: нейлоны, полиэфиры (терилен, лавсан) акриловые волокна (орлон) и полипропиленовое волокно (алстрон).
Наиболее важным из синтетических каучуков до второй мировой войны был буна‑каучук: повторяющимся звеном в цепи является бутадиен
Поиски различных каучуконосов велись в Африке, и хотя ряд нужных растений был найден, их потенциальный вклад оказался незначительным. Положение облегчилось с появлением американского синтетического каучука, известного как GR—S.
Он имеет более сложное строение, чем немецкий буна‑каучук, является сополимером, состоящим из двух компонентов — бутадиена и стирола. Этот каучук оказался по ряду свойств хуже натурального, его недостаточная "липкость", или адгезия, создавали трудности, например, при производстве автомобильных шин, однако эта проблема была решена после разработки технологий смешения его с небольшими количествами натурального каучука.
Другим важным синтетическим каучуком является бутил‑каучук‑полимер, получаемый из изобутилена. Однако из особенностей бутил‑каучука в том, что воздух диффундирует через него значительное медленнее, чем сквозь натуральный каучук, поэтому бутил‑каучук ценен, как основа при производстве автомобильных камер. Однако по сравнению с натуральным каучуком эластические свойства его значительно хуже.
В противоположность волокнам каучуки, как правило, не кристалличны; их молекулы расположены неупорядоченно. Структура каучуков, во многом подобная структуре жидкости, называется аморфной. Именно этой рыхлой структуре (в отличие от плотно упакованной регулярной структуры кристалла) каучуки обязаны своей мягкостью и гибкостью.
Третий и во многих отношениях наиболее интересный класс синтетических полимеров — это кристаллических полимеров. В отличие от обычных кристаллических твердых тел полимеры не полностью кристалличны, а содержат множество очень мелких кристаллов, существующих наряду с остальным разупорядоченным или аморфным веществом. В неориентированном состоянии они не имеют аналогов в природе, и их свойства отличаются от свойств веществ, которые были известны до сих пор.
Одним из наиболее широко и многосторонне используемых кристаллических полимеров являются полиэтилен. Он обладает превосходными изоляционными свойствами, а также легкостью и эластичностью. Полиэтилен имеет один недостаток —OH плавится при сравнительно низкой температуре (110°С—130°С)
Еще один важный кристаллический полимер — это нейлон, который имеет отличные волокнообразующие свойства, однако он может быть также получен в виде блоков для производства изделий методом литья под давлением. Tпл. (нейлона) – 265°С.
Заменой всех атомов водорода в полиэтилене на атом фтора получают кристаллический полимер с интересными свойствами. Этот полимер, известный под названием политетрафторэтилена (тефлона), имеет еще более высокую температуру плавления, а именно 360°С.
Стекла выделяются среди других полимеров своей высокой оптической прозрачностью и хрупкостью. Их прозрачность — результат того, что они не кристалличны. Как и у каучуков, расположение молекул в стеклах беспорядочно, структура стекол разупорядочена или аморфна. Отдельные кристаллы таких веществ, как кварц или алмаз, могут иметь прозрачность стекла, но, как правило, кристаллические вещества не существуют в форме отдельных единичных кристаллов, а представляют собой агломераты большого числа мелких кристаллов. Подобно тому, как белый цвет снега обусловлен отражением света от многочисленных поверхностей мельчайших кристаллов льда, так и молочно‑белая окраска кристаллических полимеров (полиэтилена), объясняется рассеянием света от межкристаллических поверхностей. В аморфной структуре стекла, как и в жидкости, нет разрывов непрерывности или различий в геометрическом расположении молекул по всему образцу и, следовательно, нет граней, от которых свет мог бы рассеиваться или отражаться. Следовательно, поскольку сами молекулы не поглощают свет, такие материалы прозрачны. Среди хорошо известных стеклообразных полимеров можно назвать полистирол, плексиглас, поливинилхлорид.
Прозрачность не является самым важным свойством стекла, и значительное число полимеров, обладающих механическими свойствами, аналогичными свойствам стекол, не имеют прозрачности плексигласа или полистирола эти вещества называют синтетическими смолами. Из первых смол, получивших промышленное применение, был бакелит, называемый так в честь его открывателя Бакеленда. Бакелит — это темно - окрашенный материал, широко использовался (и используется до сих пор) как электроизолятор.
Наряду с составом, важнейшей характеристикой полимеров является молекулярная масса или степень полимеризации (P), равная числу повторяющихся звеньев цепи.
,где М — молекулярная масса макромолекулы
М0 — молекулярная масса мономера
Полимеры, как правило, состоят из макромолекул разной молекулярной массы. Это принципиальное, присущее только полимерам свойство называется полимолекулярностью.
Молекулярно‑массовыми характеристиками полимеров являются средние молекулярные массы (
) и функции распределения по молекулярным массам. и ;где
— общее число макромолекул — молекулярная масса мономераF (n) числовая функция распределения
Рис. 1 Дифференциальная кривые молекулярно‑массового распределения в полимере: 1‑числовая, 2‑массовая функция распределения; а и в центры масс фигур;
— среднечисловая, — среднемассовая молекулярная массы5. Конфигурация, стереохимия и конформация цепи
Конфигурация цепи отражает химическую структуру макромолекулы. Под конфигурацией понимается взаимное расположение атомов вытянутой цепи, определяемое фиксированными значениями длин связей и валентных углов. Конфигурация цепи может быть изменена лишь путем разрыва химических связей, т. е. путем химической реакции. Вращение вокруг связи основной цепи не может ее изменить.
Конфигурация повторяющихся участка цепи определяется ориентацией мономерных звеньев вдоль цепи, пространственным расположением заместителей относительно плоскости полимерной цепи и геометрической (цис‑транс) изомерией в случае наличия ненасыщенных звеньев.
Пространственное расположение заместителей обычно представляется относительно плоскости, в которой расположена вытянутая цепь, представляющая собой зигзаг с углом между С—С связями равным 109° (sp3 гибридизация атомов углерода)
Атомы углерода основной цепи, связанные с двумя различными заместителями R1 и R2, являются асимметрическими и могут находиться в L или D‑форме. Если все асимметрические атомы основной цепи находятся только в L или D‑форме, то все одинаковые заместители расположены по одну сторону относительно плоскости зигзага цепи. Такая макромолекула называется изотактической. Если L и D‑форме чередуются, то заместители последовательно располагаются по обе стороны от плоскости зигзага основной цепи. В таком случае макромолекула называется синдиотактической:
изотактическая цепь |
синдиотактическая цепь |
Изо- и синдиотактические макромолекулы называются стереорегулярными или тактическими.
Макромолекулы с нерегулярным пространственным расположением заместителей называются стерео нерегулярными или атактическими.
Как стерео регулярность цепи, так и цис- и транс-изомерия повторяющихся звеньев макромолекул оказывают существенное влияние на свойства полимера.
Полимеры со стереорегулярными макромолекулами часто являются кристаллическими, тогда как полимеры со стерео нерегулярными макромолекулами, как правило, аморфны.
Яркий пример влияния стерео изомерии звеньев на свойства молекул может быть продемонстрирован на полиизопрене: цис-изомер этого полимера является каучуком, транс-изомер, известный как гуттаперча, по своим свойствам напоминает пластик.