Смекни!
smekni.com

работа Тема: Строение полимеров, биополимеров Строение белков (стр. 1 из 5)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Химический факультет

Курсовая работа

Тема: Строение полимеров, биополимеров

Строение белков

Работу выполнила:

студентка 4 курса Еременко Е.А.

Проверил:

к.х.н., доцент Шипунов Б.П.

«___»_____________2002г.

Оценка_______________

_______________________

(подпись руководителя)

Барнаул·2002

Содержание

1. Что такое полимер?. 4

1.1. Особенности строения полимеров. 4

2. Природные полимеры.. 6

2.1. Волокна. 6

2.2. Каучук. 7

2.3. Биологические полимеры.. 7

3. Синтетические полимеры.. 8

3.1. Волокна. 8

3.2. Каучуки. 9

3.3. Кристаллические полимеры.. 10

3.4. Стекла и смолы.. 10

4. Средние молекулярные массы.. 11

5. Конфигурация, стереохимия и конформация цепи. 12

6. Классификация полимеров. 15

7. Тепловые переходы в полимерах. 18

8. Белки. 20

9. Химические связи в белковой молекуле. 21

10. Уровни структурной организации молекулы белка. 23

10.1. Первичная структура. 23

10.2. Вторичная структура. 25

10.2.1. a-спиральная. 25

10.2.3. Коллагеновая спираль. 27

10.2.4. Надвторичные структуры и структурные домены.. 27

10.3. Третичная структура. 27

10.4. Четвертичная структура. 29

Вывод. 30

Литература. 31


1. Что такое полимер?

1.1. Особенности строения полимеров

Слово "полимер" дословно означает — много сегментов (от греческого polus‑много и teros‑части, сегменты).

Этот термин охватывает все вещества, молекулы которых построены из множества элементов, или звеньев. Эти элементы включают в себя как отдельные атомы так и (что чаще) небольшие группы атомов, соединенных химическими связями. Примера полимера с элементами, состоящими из элементарных атомов, служит так называемая "пластическая сера". Она получается при выливании расплава серы (при соответствующей температуре) в холодную воду. Структура полимерной серы можно представить в виде цепи атомов, связанных друг с другом химическими связями

В этом состоянии физические свойства серы иные, чем у обычной кристаллической или каменной серы, — они более типичны для каучукоподобных полимеров. Мягкая, очень эластичная и полупрозрачная, она не имеет в отличие от кристаллических веществ определенной точки плавления. При повышении температуры сера сначала размягчается, а затем течет как высоковязкая жидкость. Однако полимерная сера не стабильна и при комнатной температуре через несколько дней снова переходит в обычную порошкообразную или кристаллическую форму.

Для большинства полимеров повторяющимся элементом структуры являются небольшие группы атомов, соединенных определенным образом. Один из наиболее простых с точки зрения химического строения полимеров — полиэтилен имеет в качестве повторяющегося элемента группу CH2.

Исходная молекула, из которой образуется полимер, носит название мономерного звена (от греческого monos — единичный). Как показывает этот пример, мономерное звено не всегда является повторяющимся элементом цепи.

Однако не всегда звенья цепи идентичны. Многие полимеры образуются при взаимодействии двух различных видов мономерных звеньев или химических соединений. Это приводит к структуре типа

в которой звенья [A] и [B] регулярно чередуются по всей длине цепи.

У полимеров другого типа (называемых сополимерами) соотношение двух различных звеньев [A] и [B] не постоянно, а расположение их в цепи обычно имеет случайный характер, например

Такое построение характерно для многих синтетических каучуков.

Одно из звеньев, скажем В, может соединится с А не только по концам, но и в третьей точке. Это дает возможность цепям разветвляться:

Такой полимер может "расти" из каждой точки разветвления, образуя сложную высоко разветвленную трехмерную структуру.

До сих пор мы не уделяли внимания вопросу о числе элементарных звеньев в молекуле, необходимом для того, чтобы вещество можно было классифицировать как полимер. Что это за число, которое составляет понятие много?

Точного ответа на этот вопрос нет. Вообще говоря, любое число от двух и более соответствует полимеру. Однако полимеры, содержащие несколько звеньев, обычно называются димерами, тримерами, тетрамерами и т.д., по числу входящих в них исходных молекул, или мономерных звеньев, а термин полимер (точнее, высокополимер) относится к случаю, когда число входящих в цепь звеньев достаточно велико. Минимальное число мономерных звеньев высокополимера около 100. Максимальное число звеньев теоретически не ограничено


2. Природные полимеры

2.1. Волокна

Среди природных полимеров, имеющих промышленное значение, наиболее важное место занимают волокна как растительного, так и животного происхождения.

Главное свойство волокна — его высокая прочность на разрыв. Это специфическое свойство обусловлено определенным расположением молекул в структуре волокна. Волокна обычно содержат очень маленькие кристаллы и кристаллиты и эти кристаллиты вытянуты, или "ориентированы" вдоль волокна таким образом, что длинноцепочечные молекулы располагаются параллельно или почти параллельно оси волокна. Такое геометрическое расположение цепей наиболее эффективно противодействует деформации или разрушению структуры под влиянием растягивающих усилий.

Издавна широко использовались природные волокна, в основе которых лежит химическое вещество — целлюлоза. Она имеет довольно сложное строение цепи, повторяющимся звеном которой является соединение C6H10O5.

Из других промышленно важных природных волокон следует упомянуть шерсть и шелк. Это продукты животного происхождения. Железы шелкопряда выделяют волокна шелка, из которых формируется кокон. С химической точки зрения шерсть и шелк — это белки, весьма обширный класс веществ, широко распространенный в мире растений и животных.

Белки отличаются от уже рассмотренных полимеров тем, что их цепь построены из повторяющихся элементов неодинакового химического строения. Общая формула элементарного звена белковой цепи

где группы R в общем различны в каждом звене на протяжении всей цепи и могут соответствовать любой из более чем 25 аминокислот. Различные белки характеризуются различным набором и количественным соотношением этих аминокислот.

2.2. Каучук

Натуральный каучук промышленного применения получают из сока бразильской гевеи. Этот сок (латекс) представляет собой молоко подобную жидкость, в которой каучук суспензирован в виде микроскопических глобул.

Есть и другое древо, сок которого содержит сорт каучука, называемого гуттаперчей. Молекулы гуттаперчи и каучука построены из одних и тех же звеньев (изопрена), отличающихся только структурой.

Необычные свойства каучука хорошо известны. Высокая способность к растяжению и упругость выделили в свое время каучуки в отдельный уникальный класс веществ.

2.3. Биологические полимеры

Строение тела животных и человека дает многочисленные примеры использования природой физических и химических свойств разнообразных полимерных материалов.

Мышцы построены из связок волокон, представляющих собой одну из форм белка. Главной функцией мышц является, конечно, перевод химической энергии, полученной из мышц в механическую работу, но поскольку мышцы обладают не которыми эластическими свойствами каучуков, то мышечная система выполняет функции прокладки, амортизирующей удары и защищающей внутренние организмы от повреждений.

Клей и желатину получают из другого фибриллярного белка — коллагена, основного белка кожи.

Прочность кожи, которой добиваются химической обработкой (дубление) шкур, обусловлена сеткой составляющих их коллагеновых волокон.

3. Синтетические полимеры

3.1. Волокна

Среди волокон мы должны различать синтетические, т.е. такие, большие молекулы которых построены или синтезированы из очень простых химических соединений, и такие, которые получены из природных полимеров (обычно целлюлозы) посредствам химической переработки их в другие формы. Оба эти типа полимеров объединяются общим названием химические волокна. Для производства непрерывного нитевидного волокна исходный полимер должен быть жидким — в виде расплава или раствора. Целлюлоза как возможный материал для подобных целей имеет большой недостаток — она не только не плавится, но и не растворяется ни в воде, ни в обычных органических растворителях. Поэтому, чтобы использовать целлюлозу, ее следует подвергать обработке. Один из способов обработки состоит в том, что на целлюлозу действуют уксусной кислотой, в результате чего она превращается в ацетат целлюлозы. Ацетат целлюлозы хорошо растворяется в органических растворителях, например в ацетоне; при этом образуется очень вязкий сиропообразный раствор, который можно продавить через многоканальную фильеру, содержащую необходимое число мельчащих отверстий; в результате получают пучок тонких волоконец, которые после вытяжки и испарения растворителя образуют непрерывную нить ацетата целлюлозы. В процессе другого типа выдавливаемая жидкая масса химически модифицированной целлюлозы подвергается обработке, превращающей ее в исходную целлюлозу. Этот продукт, известный под названием вискозный шелк, является примером регенерированного целлюлозного волокна.