Смекни!
smekni.com

Методические рекомендации по разработке и подготовке к принятию проектов технических регламентов (стр. 16 из 33)

- «также, как» - появление дополнительных компонентов (воздух, вода, примеси); «другой» — состояние, отличающиеся от обычной работы (пуск, остановка, повышение производительности и т.д.);

- «иначе, чем» - полное изменение процесса, непредвиденное событие, разрушение, разгерметизация оборудования;

- «обратный» - логическая противоположность замыслу, появление обратного потока вещества.

Результаты анализа представляются на специальных технологических листах (таблицах). Степень опасности отклонений может быть определена количественно путем оценки вероятности и тяжести последствий рассматриваемой ситуации по критериям критичности аналогично методу АВПКО.

Результаты оценки потенциальной опасности объектов, получаемые при использовании методов «Анализ опасности и работоспособности» и «Анализ вида и последствий отказов», могут быть (при выполнении определенных условий) представлены в количественном виде (именно поэтому выше упоминались определение «полуколичественные методы»).

Для представления результатов применения упомянутых методов в количественном виде каждому типу (виду) отказа приписывают две составляющие: вероятность (частоту) реализации и тяжесть возможных последствий. Эта процедура проводится для выработки соответствующих рекомендаций.

Отметим, что метод АОР, так же как АВПКО, кроме идентификации опасностей и их ранжирования позволяет выявить неясности и неточности в инструкциях по безопасности и способствует их дальнейшему совершенствованию. Недостатки методов связаны с затрудненностью их применения для анализа комбинаций событий, приводящих к аварии.

Предварительный анализ факторов опасности PHA (Preliminary Hazard Analysis) [8] - индуктивный метод, назначение которого состоит в том, чтобы идентифицировать для всех этапов эксплуатационного периода указанной системы /подсистемы/ компонент факторы опасности, опасные ситуации и опасные события, которые могли бы привести к несчастному случаю. Метод позволяет идентифицировать возможность несчастного случая и качественно оценить степень возможного повреждения или вреда для здоровья. Затем даются предложения о мерах по обеспечению безопасности и результат их применения.

Анализ PHA должен обновляться в течение выполнения этапов проектирования, изготовления и испытания, чтобы обнаружить новые опасности и внести исправления, в случае необходимости.

Описание полученных результатов может быть представлено различными способами (например, в виде таблицы, или древовидной схемы).

«Метод анализа ошибок персонала» (Human Reliability Analysis — HRA) [6] предназначен для качественной оценки событий связанных с ошибками персонала. Он также может быть использован для разработки рекомендаций по снижению вероятности таких ошибок.

Ошибка персонала — это действие, которое выполняется или не выполняется при некоторых условиях. Это могут быть физические действия (поворот рукоятки) или действия, связанные с умственной деятельностью (диагностика отказов или принятие решения).

HRA включает идентификацию условий, которые вызывают ошибки людей и оценку вероятностей таких ошибок. Преднамеренные действия в данном анализе в расчет не принимаются.

Для анализа ошибок персонала используют различные методики содержащие:

- определение перечня задач (действий), которые решает (выполняет) или должен решать (выполнять) оператор;

- представление с помощью декомпозиции каждой такой задачи (действия) в виде комбинации элементарных действий в целях выявления среди них наиболее подверженных ошибкам и определения точек взаимодействия оператора и системы;

- использование данных, получаемых из записей о предшествующих событиях;

- определение наличия условий, влияющих на частоту ошибок, к которым относятся стрессы, уровень тренированности и качество систем отображения информации.

Количественные характеристики ошибок персонала получают с помощью «Метода прогноза частоты ошибок персонала» (Technique For Human Error Rate Prediction - THERP) или «Плана развития последовательности событий» (Accident Sequence Evaluation Programm - ASEP).

Среди дедуктивных методов можно выделить метод MOSAR (Method Organized Analysis of Risks – метод системного анализа рисков) [8]. Данный метод состоит из десяти этапов. Анализируемая система рассматривается как некоторое количество подсистем, которые взаимодействуют. Используется таблица, чтобы идентифицировать факторы опасности, опасные ситуации и опасные события. Адекватность мер по обеспечению безопасности изучается по второй таблице, и по третьей таблице, принимающей во внимание их взаимозависимость. Изучение подчеркивает возможные опасные отказы. Это позволяет разработать сценарии несчастных случаев. Сценарии сортируются по степени серьезности. В следующей таблице эта серьезность связывается с целями, которые будут преследоваться мерами по обеспечению безопасности, и определяются уровни эффективности технических и организационных мер. Затем меры по обеспечению безопасности включаются в логические деревья, а остаточные риски анализируются по таблице допустимости.

Перечисленные методы могут применяться изолированно или в дополнение друг к другу, причем методы качественного анализа могут включать количественные критерии риска (в основном, по экспертным оценкам с использованием, например, матрицы «вероятность-тяжесть последствий» ранжирования опасности). По возможности полный количественный анализ риска должен использовать результаты качественного анализа опасностей.

Для выявления рисков и их оценки опасных событий, выявления причинно-следственных связей возникновения этих событии и между ними используют логико-графические методы диаграмм влияния. Они наиболее полно удовлетворяют требованиям анализа сложных технических систем и представляют процесс выявления отдельных предпосылок и развития их в причинную цепь происшествия в виде соответствующих диаграмм причинно-следственных связей. Под такими диаграммами обычно понимают некоторое формализованное представление моделируемых категорий (объектов, процессов, целей и свойств) в виде множества графических символов (узлов, вершин) и отношений – предполагаемых или реальных связей между ними. Самое широкое распространение в настоящее время получили диаграммы в форме различных графов (либо потоковых состояний и переходов), деревьев событий (целей, свойств) и функциональных сетей различного предназначения и структуры, в том числе стохастической. При этом эти методы могут относиться к прямым или обратным методам (дедуктивным или индуктивным методам анализа рисков).

Как показывает опыт применения перечисленных диаграмм влияния, их основными достоинствами являются: высокая информативность представления и описания исследуемых категорий, хорошая наглядность и декомпозируемость, доступность и однозначность понимания пользователем, удобство интерпретации и обработки на средствах вычислительной техники, возможность применения формализованных процедур системного анализа этих моделей и системного синтеза мероприятий по совершенствованию их оригиналов.

Диаграммы влияния как средств формализации опасных процессов, связанных с функционированием человеко-машинных систем, занимают особое место, так как позволяют описывать, а затем и оценивать предикаты первого, второго и высших порядков, являющихся соответственно их свойствами, отношениями между ними и другими категориями. Это достоинство обусловлено возможностью применять различные языки описания, позволяющие переходить от смысловых моделей к знаковым и использовать последние для анализа и синтеза с помощью современных математических и машинных методов.

Из определения диаграммы влияния следует, что основными компонентами ее структуры служат узлы (вершины) и связи (отношения) между ними. В качестве узлов обычно подразумевают простейшие элементы моделируемых категорий (переменные или константы) - события, состояния, свойства, а в качестве связей - активности, работы и ресурсы.

Каждые два соединенных между собой узла образуют ветвь диаграммы. В тех случаях, когда узлы связаны направленными дугами таким образом, что каждый из них является общим ровно для двух ветвей, возникают циклы или петли. Петли могут характеризоваться порядком, величина которого п определяется количеством не связанных между собой петель первого порядка. В свою очередь, петля первого порядка не должна содержать внутри себя другие петли и обеспечивать достижимость ее любых узлов.

Одним из достоинств диаграмм влияния, как отмечалось выше, является их легкость сопряжения с другими способами формализации и моделирования. С помощью предварительно построенных диаграмм - графов, сетей и деревьев - могут быть получены, например, математические модели появления аварийности и травматизма. Созданные при этом аналитические модели пригодны для статистического моделирования данного явления и решения задач совершенствования безопасности методами оптимизации. Однако для осуществления перехода от графических моделей к математическим нужна дополнительная символика.

Введенные специальные обозначения позволяют формализовать и однозначно интерпретировать в последующем конкретный опасный процесс или объект техносферы, представленный диаграммой влияния. В свою очередь, математическое представление всей диаграммы влияния в общем случае может быть выражено такой металингвистической формулой.

Самым известным типом рассматриваемых диаграмм влияния является граф. При моделировании условий возникновения аварийных ситуаций в техносфере обычно используются ориентированные графы, характеризующиеся определенным набором состояний рассматриваемой человеко-машинной системы и возможными переходами между ними.

В исследованиях по техносферной безопасности, однако, более широкое распространение сейчас получили диаграммы причинно-следственных связей, имеющие ветвящуюся структуру и называемые «дерево».