Смекни!
smekni.com

Методические рекомендации по разработке и подготовке к принятию проектов технических регламентов (стр. 21 из 33)

В одном из таких методов, методе предпочтений, в качестве базы для аналогий и как руководство для будущих балансов используется баланс “затраты-выгода”, разработанный рыночными, социальными и политическими институтами в недавнем прошлом. Другой метод из этого семейства, метод естественных стандартов, обращается к геологическому прошлому Земли. Он исходит из предпосылки, что уровень загрязнения, который существовал в процессе развития видов флоры и фауны, является тем уровнем, к которому эти виды наилучшим образом приспособлены, и этот уровень должен быть сохранен и в будущем.

В методах бутстреппинга политика принятия решений связана с учетом всех последствий создания новых объектов и налагает довольно жесткие ограничения на вновь возникающие риски. Одно из концептуальных ограничений этих методов связано с тем обстоятельством, что для новых рисков (новых опасностей, вредных воздействий) не существует соответствующего опыта. Другой недостаток связан с тем, что эти методы оценивают приемлемость конкретного выбора без рассмотрения альтернативных решений. Они не способны исправлять ситуацию, если она неприемлема для общества.

Методы математического имитационного моделирования. Суть концепции количественного анализа риска заключается в построении множества всех (без исключения, не противоречащих законам физики) сценариев возникновения и развития возможных аварий на объекте, с последующей оценкой частот реализации каждого из сценариев и определением масштабов последствий сценариев развития аварии.

Анализ риска (то есть получение количественных оценок потенциальной опасности промышленных объектов или различных явлений) включает решение следующих задач:

• построение всего множества сценариев возникновения и развития аварии с учетом синергетических и кумулятивных факторов;

• оценку частот реализации каждого из сценариев возникновения и развития аварии;

• построение полей поражающих факторов, возникающих при различных сценариях развития аварии;

• оценку ущербов воздействия поражающих факторов аварии на человека или другие материальные объекты.

Прогноз последствий возможных аварий на объекте базируется на математическом моделировании аварийных событий.

Это обязательный этап для вычисления риска. В тех случаях, когда отсутствует необходимая информация для проведения частотного анализа, обычно ограничиваются лишь первыми двумя этапами (предварительным анализом опасности и анализом последствий аварийных событий). С помощью этих двух этапов можно спрогнозировать возможные потери от аварий, но без учёта вероятности их наступления.

Количественный анализ аварийных событий базируется на использовании математических моделей и методов математического моделирования. На этом этапе используются математические модели разных классов. Основными среди них являются те, которые описывают поведение вредных примесей в окружающем пространстве.

Конечной целью данного этапа анализа аварийного риска является количественный прогноз, сравнительная оценка возможного ущерба от аварий на опасном объекте.

Первый этап состоит в математическом моделировании преинцидентных сочетаний аварийных событий. На данном этапе на моделях проигрываются различные опасные инициирующие события. При этом, необходимо учитывать различные элементы системы обеспечения безопасности объекта. С помощью моделей, формируемых на данном этапе, можно проимитировать различные комбинации аварийных событий. Наибольшие трудности на этапе АП возникают при моделировании сочетаний постинцидентных аварийных событий. Здесь необходимо описать множество связанных друг с другом событий для каждого инцидента, принятого для рассмотрения, начиная от событий, связанных с высвобождением токсического и/или энергетического потенциала и кончая поражением людей, фауны и флоры, заражением абиотических элементов окружающей природной среды.

При формировании математических моделей проявления инцидентов большое значение придаётся правильному выбору моделей источников. К подобным моделям относятся, прежде всего, модели истечения вещества. Их форма зависит от ряда признаков: агрегатного состояния вещества (газ, жидкость, газо-жидкостная смесь); распределения вещества во времени (утечка мгновенная, непрерывная, полунепрерывная); распределения вещества в пространстве (утечка точечная, линейная, площадная, объёмная) и др.

Для математического описания инцидентов, связанных с выбросами перегретых жидкостей и сжиженных газов, важную роль играют модели вскипания и испарения жидкости с поверхности. Эти модели позволяют охарактеризовать источник, вызывающий образование облака паров опасных веществ.

К моделям источников относят также и модели растекания жидких веществ по поверхности.

Имитационное моделирование возможных реализаций инцидентов опирается на использование моделей источников, моделей полей поражающих факторов, моделей описания реципиентов, моделей смягчающих факторов и моделей поражения.

Модели полей поражающих факторов включают модели концентрационных полей токсичных веществ в разных средах; модели температурных полей, возникающих в случае пожаров и взрывов, модели распределения давления и осколков при взрывах. Для оценки последствий токсических аварий строят модели переноса токсикантов в воздушной среде (в атмосфере, в воздухе закрытых помещений); в поверхностных водах; в почве, включая грунтовые воды и в биоте. Всё более важное значение придаётся моделям межсреднего переноса поллютантов.

Под моделями описания реципиентов подразумеваются модели их распределения по видам и факторам уязвимости. К ним примыкают модели смягчающих факторов, в которых отражается защищённость реципиентов от воздействия поражающих факторов.

К моделям поражения относят модели токсического поражения людей, биоты; модели термического поражения, а также модели барического и осколочного поражения.

В результате имитационного моделирования должны быть получены прогнозные значения потерь для разных реципиентов для каждой возможной реализации инцидента (аварии).

Затем предполагается оценка полученных значений прогнозируемого ущерба от разных возможных аварий и сравнение их с допустимыми критическими значениями.

При превышении последних выявляются наиболее значимые аварийные события, которые вносят наибольший вклад в значения ущерба, признанного недопустимым.

В итоге разрабатываются рекомендации, нацеленные на снижение уровня недопустимо больших значений ущерба при тех или иных авариях, и обеспечивается их реализация.

Метод индексов опасности [1]. В этом случае к оценке потенциальной опасности подходят интегрально, не вдаваясь в детали проявлений опасных процессов. Основная идея, заложенная в этом методе, состоит в том, чтобы оценить некоторым числовым значением (индексом) степень опасности рассматриваемой технической системы. Существуют различные способы, которыми это может быть сделано, но наиболее часто и широко при оценке пожаро- и взрывобезопасности используется метод, называемый “Индекс Дау” (Dow Fire and Explosion Index).

При вычислении индекса Дау отдельным техническим характеристикам системы ставятся в соответствие определенные показатели, численно характеризующие потенциальную опасность конкретных элементов процесса или технической системы. Такие показатели суммируют, не вдаваясь в подробности устройства или функционирования рассматриваемой системы.

Индекс Дау формируется как произведение двух интегральных показателей: узлового показателя опасности F и материального фактора M, т.е. ДАУ = F · M. Узловой показатель опасности равен F=f1 · f2, где f1 – показатель общих опасностей, а f2 – показатель специфических опасностей. Материальный фактор M — это количественная мера интенсивности выделения энергии из определенных химических веществ или материалов, которые могут находиться или находятся в составе выбранной единицы оборудования или части процесса. Он численно характеризует опасность, которую представляют собой определенные химические вещества или материалы при их использовании. Для его определения составляется перечень всех потенциально опасных химических веществ и материалов, используемых в данной системе или процессе. Каждому из таких веществ ставится в соответствие определенное число, характеризующее его опасность. Шкала таких чисел для химически опасных веществ обычно разрабатывается специальными службами и приводится в нормативных документах. Общий материальный фактор системы определяется как сумма материальных факторов всех потенциально опасных веществ, используемых в рассматриваемом процессе, взятых с весами, соответствующими их количеству.

Частотный анализ аварийных событий (ЧА).

Назначение частотного анализа (ЧА) – оценить возможную интенсивность реализаций каждой из прогнозируемых наиболее опасных аварий. В отличие от вероятностей, интенсивности случайных событий измеряются в единицах, обратных времени.