В лазере рубин освещается импульсной ксеноновой лампой (рис.2), которая дает свет с широкой полосой частот. При достаточной мощности лампы большинство ионов хрома переводится в возбужденное состояние. Процесс сообщения рабочему телу лазера энергии для перевода атомов в возбужденное состояние называется накачкой. На рис. 3 дана схема уровней иона хрома Cr3+ (уровень 3 представляет собой полосу, образованную совокупностью близко расположенных уровней).
Возбуждение ионов за счет накачки изображено стрелкой W13. Время жизни уровня 3 очень мало (~ 10-8 с). В течение этого времени некоторые ионы перейдут спонтанно из полосы 3 на основной уровень 1. Такие переходы показаны стрелкой A31 . Однако, большинство ионов перейдет на метастабильный уровень 2 (вероятность перехода, изображенного стрелкой S32, значительно больше, чем перехода A31). При достаточной мощности накачки число ионов хрома, находящихся на уровне 2, становится больше числа ионов на уровне 1. Следовательно, возникает инверсия населенностей уровней 1 и 2.
Стрелка А21 изображает спонтанный переход с метастабильного уровня на основной. Излученный при этом фотон может вызвать вынужденное испускание дополнительных фотонов (переход W21), которые в свою очередь вызовут вынужденное излучение, и т. д. В результате образуется каскад фотонов. Напомним, что фотоны, возникающие при вынужденном излучении, летят в том же направлении, что и падающие фотоны. Фотоны, направления движения которых образуют малые углы с осью кристаллического стержня, испытывают многократные отражения от торцов образца. Поэтому путь их в кристалле будет очень большим, так что каскады фотонов в направлении оси получают особенное развитие. Фотоны, испущенные спонтанно в других направлениях, выходят из кристалла через его боковую поверхность.
Процесс образования каскада изображен схематически на рис.4. До вспышки лампы ионы хрома находятся в основном состоянии (черные кружки на рис.4а). Свет накачки (сплошные стрелки на рис.4б) переводит большинство ионов в возбужденное состояние (светлые кружки). Каскад начинает развиваться, когда возбужденные ионы спонтанно излучают фотоны (штриховые стрелки на рис.4в) в направлении, параллельном оси кристалла (фотоны, испущенные по другим направлениям, выходят из кристалла). Фотоны размножаются за счет вынужденного излучения. Этот процесс развивается (рис.4г и д), так как фотоны многократно проходят вдоль кристалла, отражаясь от его торцов.
Рис. 4. Процесс образования каскада фотонов
При каждом отражении от частично прозрачного торца небольшая доля (8 %) светового пучка выходит из кристалла. Поэтому после каждого акта накачки возникает вспышка лазерного излучения, состоящая из ряда импульсов, общая продолжительность которых равна нескольким микросекундам. Лазеры на рубине работают в импульсном режиме с частотой порядка нескольких вспышек в минуту.
В 1961 г. Джаваном[6] был создан первый газовый лазер, работающий на смеси гелия и неона. В 1963 г. были созданы первые полупроводниковые лазеры. В настоящее время список лазерных материалов насчитывает много десятков твердых, жидких и газообразных веществ. Одни лазеры работают в импульсном, другие—в непрерывном режиме.
Если цилиндрический сосуд наполнить смесью гелия и у неона, внутрь его поместить металлические электроды и подать на них высокое напряжение, то смесь газов начнет светиться красноватым светом, почти таким же, как и неоновая реклама (рис. 5).
В стеклянной трубке возникает тлеющий разряд. При этом между атомами газа движется много быстрых электронов. Они сталкиваются с атомами гелия и возбуждают их. Электроны сталкиваются с неоном, но, как правило, возбуждают только низколежащие уровни неона. Возбужденные атомы гелия, сталкиваясь с атомами неона, отдают им свою энергию и возбуждают их высокие уровни. С этих высоких уровней атом неона переходит в промежуточное состояние Е1. Если теперь у торцов сосуда с гелий-неоновой смесью установить такие же зеркала, как и у торцов рубинового лазера, то фотон с энергией Е1 — Е2, испущенный параллельно оси сосуда, вызовет лазерное излучение. В газовом лазере число возбужденных атомов неона и гелия непрерывно пополняется. Поэтому гелий-неоновый лазер излучает свет непрерывно.
Очень интересен лазер с жидким излучающим телом. Мы уже знаем, что главную роль в излучающем теле рубинового лазера играют атомы хрома.
На рисунке показаны только уровни, участвующие в генерации видимого излучения газового лазера. На самом деле схема уровней и неона, и гелия сложнее. |