Твердые тела могут обладать точечными дефектами. Точечные дефекты – нарушение кристаллической решетки в изолированных друг от друга точках.
Различают два вида дефектов (дислокаций): краевую и винтовую. Дислокации могут перемещаться в кристаллической решетке. При краевой дислокации (рис.4) происходит искажение кристаллической структуры. Это вызвано тем, что в части объема кристалла в процессе его роста возникла лишняя атомная «полуплоскость». При винтовой дислокации происходит искажение пространственной решетки. Атомные ряды изгибаются и меняют рис.4
своих соседей. Эти дислокации происходят при росте кристалла.
Знания о строении вещества позволяет влиять на свойства вещества и создавать материалы с определенными свойствами. Создание материалов с заданными свойствами, потребность в которых постоянно растет, - одно из основных направлений научно-технического прогресса.
Наиболее важной считается задача повышения прочности материалов. Как известно, прочность повышается как при уменьшении числа дефектов, так и при их увеличении. Можно сделать вывод о том, что она максимальна у идеального кристалла. Поэтому одна из возможностей повышения прочности - выращивание бездефектных кристаллов, кристаллов максимально близких к идеальному. Такие кристаллы выращивают в лабораториях. Они имеют нитевидную форму и их прочность практически равна теоретической. Так, кристаллы железа, полученные в лаборатории, имеют прочность 14×107 Па, в то время как прочность обычного чистого железа - 2×107 Па.
С другой стороны прочность растет с увеличением числа дефектов. Это связано с тем, что дефекты тормозят перемещение дислокаций. Поэтому для повышения прочности необходимо увеличить концентрацию дефектов. С этой целью материал можно подвергнуть пластической деформации. Этот способ повышения прочности называют наклепом. Примерами наклепа являются ковка, прокатка, волочение и т.п. Опыт показывает, что при наклепке прочность возрастает в десятки раз.
Повышению прочности материалов способствует введение в них примесей, которые препятствуют распространению дислокаций. Такими примесями могут быть атомы углерода, кремния, бора, азота. Поэтому широкое распространение в технике получают сплавы, которые имеют большую прочность по сравнению с чистыми металлами, например, различные стали (сплавы железа, углерода и других элементов), латунь (сплав меди и цинка), сплавы алюминия или магния с медью и другими элементами.
Помимо высокой прочности, сплавы обладают и другими свойствами, отличающими их от чистых металлов. Например, некоторые из них более термостойки, чем составляющие их металлы, другие наоборот плавятся при более низкой температуре. Так, олово плавится при 232 0С, свинец - при 327 0С; сплав олова со свинцом - при 170 0С; сплав карбида тантала с гафнием имеет наивысшую из известных температуру плавления - 4215 0С.
Есть сплавы, обладающие очень высокой твердостью, существуют упругие сплавы, сплавы, соединяющие легкость и прочность (дюрали), сплавы, не подверженные окислению (нержавеющие стали), сплавы с большим электрическим сопротивлением (нихром), сплавы со специальными магнитными свойствами, сплавы, имеющие малый температурный коэффициент линейного расширения (инвар) и др.
Причина, по которой сплав приобретает свойства, отличные от свойств его компонентов, заключается в том, что в расплавленном состоянии происходит активное перемещение частиц, поскольку они обладают высокой энергией теплового движения. Поэтому при кристаллизации образуется материал (сплав) с иным строением и с иными свойствами.
Знание строения вещества и умение изменять его и управлять свойствами материалов крайне важно для дальнейшего научно-технического прогресса.
Прорыв в новые области знаний, технологий, создание изделий с требуемыми свойствами, резкое улучшение экономических показателей, обретение технико-экономической независимости вследствие отказа от использования традиционно приемлемых материалов - все это возможно только благодаря современным материалам - новым композиционным материалам.
Сочетание разнородных веществ приводит к созданию нового материала, свойства которого количественно и качественно отличаются от свойств
рис.5 каждого из его составляющих. Варьируя состав матрицы и наполнителя, их соотношение, ориентацию наполнителя, получают широкий спектр материалов с требуемым набором свойств. Многие композиты превосходят традиционные материалы и сплавы по своим механическим свойствам и в то же время они легче. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик.
То, что малые добавки волокна значительно увеличивают прочность и вязкость хрупких материалов, было известно с древнейших времен. Во времена египетского рабства евреи добавляли солому в кирпичи, чтобы они были прочнее и не растрескивались при сушке на жарком солнце.
Подобные технологии существовали у многих народов. Инки использовали растительные волокна при изготовлении керамики, а английские строители до недавнего времени добавляли в штукатурку немного волоса.
Другой композит, известный еще в Древнем Египте, содержал намного больший процент волокон, чем египетские кирпичи. Оболочки для египетских мумий делали из кусков ткани или папируса, пропитанных смолой или клеем. Этот материал (папье-маше) был заново открыт только в XVIII веке (вместо папируса использовались куски бумаги) и был популярен до середины XX века. Из папье-маше делали игрушки, рекламные макеты, а иногда даже мебель.
А вот другой пример. Первые композиционные материалы на основе полимеров — битумную смолу, наполненную тростником,— использовали для строительных целей в Древнем Вавилоне более 5000 лет назад. Известно, что в Египте и в государствах Месопотамии в третьем тысячелетии до н.э. из этого же материала строили речные суда. Если внимательно проанализировать искусство мумифицирования, распространенное в Древнем Египте, то в основе его также можно найти способ получения композитов. В самом деле, тело после соответствующей обработки обматывали лентой из ткани и пропитывали природной смолой с образованием жесткого кокона.
Пожалуй, в каждом современном доме найдутся предметы мебели, сделанные из распространенного в наши дни композиционного материала - древесно-стружечных плит (ДСП), в которых матрица из синтетических смол наполнена древесными стружками и опилками. А наиболее известным на сегодняшний день композитом, вероятнее всего, является железобетон. Сочетание бетона и железных прутьев дает материал, из которого сооружают конструкции (пролеты мостов, балки и т.п.), выдерживающие большие нагрузки, вызывающие растрескивание обычного бетона. Интересно, что первыми применять железо в качестве арматуры стали древние греки, причем армировали они мрамор. Когда архитектору Мнесиклу в 437 году до н.э. понадобилось перекрыть пролеты длиной в 4-6 м, он замуровал в специальных канавках в мраморных плитах двухметровые железные стержни, чтобы перекрытия справились с напряжениями.
Компонентами композитов являются самые разнообразные материалы - металлы, керамика, стекла, пластмассы, углерод и т.п. Известны многокомпонентные композиционные материалы - полиматричные, когда в одном материале сочетают несколько матриц, или гибридные, включающие в себя разные наполнители. Наполнитель определяет прочность, жесткость и деформируемость материала, а матрица обеспечивает монолитность материала, передачу напряжения в наполнителе и стойкость к различным внешним воздействиям.
В последнее время материаловеды экспериментируют с целью создать более удобные в производстве, а значит — и более дешёвые материалы. Исследуются саморастущие кристаллические структуры, склеенные в единую массу полимерным клеем (цементы с добавками водорастворимых клеев), композиции из термопласта с короткими армирующими волоконцами и пр. [2, c.135].