Смекни!
smekni.com

Работа «Оперативка» (стр. 5 из 11)

Следует упомянуть тот факт, что микросхемы SDRAM и DDR физически не совместимы: в первом случае микросхемы имеют 168 контактов, во втором – 184. Отсюда несколько разное расположение ключа. Кроме этого, не все чипсеты поддерживают тот или иной тип памяти.

В ближайшее время на рынке должна появится DDR 2. В этом типе памяти данные будут передаваться не 2 раза, а 4, что позволит повысить максимальную пропускную способность до 6,4 Гбайт/сек, и это позволит продлить жизнь DDR в мире инфотехнологий.

2.1.9 RDRAM (Rambus DRAM)

Direct Rambus DRAM - это высокоскоростная динамическая память с произвольным доступом, разработанная Rambus, Inc. Она обеспечивает высокую пропускную способность по сравнению с большинством других DRAM. Direct Rambus DRAMs представляет интегрированную на системном уровне технологию.

Технология Direct Rambus представляет собой третий этап развития памяти RDRAM. Впервые память RDRAM появилась в 1995 г., работала на частоте 150 МГц и обеспечивала пропускную способность 600 Мбайт/с. Она использовалась в станциях SGI Indigo2 IMPACTtm, в приставках Nintendo64, а также в качестве видеопамяти. Следующее поколение RDRAM появилось в 1997 г. под названием Concurrent RDRAM. Новые модули были полностью совместимы с первыми. Но за год до этого события в жизни компании произошло не менее значимое событие. В декабре 1996 г. Rambus, Inc. и Intel Corporation объявили о совместном развитии памяти RDRAM и продвижении ее на рынок персональных компьютеров. Вопреки распространенному мнению, ее архитектура довольно прозаична и не блещет новизной. Основных отличий от памяти предыдущих поколений всего три:

а) увеличение тактовой частоты за счет сокращения разрядности шины,
б) одновременная передача номеров строки и столба ячейки,
в) увеличение количества банков для усиления параллелизма.

Повышение тактовой частоты вызывает резкое усиление всевозможных помех и в первую очередь электромагнитной интерференции, интенсивность которой в общем случае пропорциональна квадрату частоты, а на частотах свыше 350 мегагерц вообще приближается к кубической. Это обстоятельство налагает чрезвычайно жесткие ограничения на топологию и качество изготовления печатных плат модулей микросхемы, что значительно усложняет технологию производства и себестоимость памяти. С другой стороны, уровень помех можно значительно понизить, если сократить количество проводников, т.е. уменьшить разрядность микросхемы. Именно по такому пути компания Rambus и пошла, компенсировав увеличение частоты до 400 MHz (с учетом технологии DDR эффективная частота составляет 800 MHz) уменьшением разрядности шины данных до 16 бит (плюс два бита на ECC).

Рис.2.1.9.1 Модули памяти RDRAM

Второе (по списку) преимущество RDRAM - одновременная передача номеров строки и столбца ячейки при ближайшем рассмотрении оказывается вовсе не преимуществом, конструктивной особенностью. Это не уменьшает латентности доступа к произвольной ячейке (т.е. интервалом времени между подачей адреса и получения данных), т.к. она, латентность, в большей степени определяется скоростью ядра, а RDRAM функционирует на старом ядре.

Большое количество банков позволяет (теоретически) достичь идеальной конвейеризации запросов к памяти, несмотря на то, что данные поступают на шину лишь спустя 40 нс. после подачи запроса (что соответствует 320 тактам в 800 MHz системе), сам поток данных непрерывен.

Емкость серийно выпускаемых модулей Rambus DRAM составляет 64, 128 и 256 Мб, в дальнейшем ожидаются изделия по 1 Гб. Так как использование 9-го бита на каждый байт данных оставлено на усмотрение производителя, одни фирмы вводят функцию ЕСС, другие увеличивают емкость чипов. В последнем случае получаются модули емкостью 72, 144 или 288 Мб.

Недостатком можно посчитать придуманные производителем режимы управления питанием модулей. Если напряжение питания 2,5 В стало практически стандартом для всех новых технологий памяти DRAM, то режимы работы Асtive (активный), Standby (ожидания), NAP ("спящий") и PowerDown (отключение питания) - собственное изобретение Rambus. Самое интересное, что микросхема, не обменивающаяся в текущий момент данными с контроллером, автоматически переводится в режим ожидания, иначе возможен перегрев системы, так как тактовые частоты весьма высоки. На переключение же из режима Standby в активное состояние требуется 100 нс.

Хочется отметить, что реальная пропускная способность RDRAM существенно ниже заявленных Rambus значений. После появления системного набора Intel 820 с поддержкой DR DRAM были проведены сравнительные тесты с другими типами памяти. Оказалось, что на большинстве реальных задач RDRAM уступает даже SDRАМ, работающим на частоте 133 МГц. В значительной мере это объясняют более узкой шиной данных канала Rambus (16 бит) по сравнению с 64-битной шиной SDРАМ. С появлением чипсета VIА Ароllo Рго2бб, поддерживающего DDR DRАМ, картина для Rambus и Intel становится вовсе безрадостной.

2.2 Память типа SRAM

Существует тип памяти, совершенно отличный от других - статическая оперативная память (Static RAM – SRAM). Она названа так потому, что, в отличии от динамической оперативной памяти, для сохранения ее содержимого не требуется периодической регенерации. Но это не единственное ее преимущество. SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры.

Время доступа SRAM не более 2 нс, это означает, что такая память может работать синхронно с процессорами на частоте 500 МГц или выше. Однако для хранения каждого бита в конструкции SRAM используется кластер из 6 транзисторов. Использование транзисторов, без каких либо конденсаторов означает, что нет необходимости в регенерации. Пока подается питание, SRAM будет помнить то, что сохранено.

Рис.2.2.1 Ячейка SRAM

Микросхемы SRAM не используются для всей системной памяти потому, что по сравнению с динамической оперативной памятью быстродействие SRAM намного выше, но плотность ее намного ниже, а цена довольно высокая. Более низкая плотность означает, что микросхемы SRAM имеют большие габариты, хотя их информационная емкость намного меньше. Большое число транзисторов и кластиризованное их размещение не только увеличивает габариты SRAM, но и значительно повышает стоимость технологического процесса по сравнению с аналогичными параметрами для микросхем DRAM.

Несмотря на это, разработчики все-таки применяют память типа SRAM для повышения эффективности РС. Но во избежание значительного увеличения стоимости устанавливается только небольшой объем высокоскоростной памяти SRAM, которая используется в качестве кэш-памяти. Кэш-память работает на тактовых частотах, близких или даже равных тактовым частотам процессора, причем обычно именно эта память используется процессором при чтении и записи.

В переводе слово «cache» (кэш) означает «тайный склад», «тайник» («занач­ка»). Тайна этого склада заключается в его «прозрачности» — адресуемой облас­ти памяти для программы он не добавляет. Кэш является дополнительным быс­тродействующим хранилищем копий блоков информации из основной памяти, вероятность обращения к которым в ближайшее время велика. Кэш не может хранить копию всей основной памяти, поскольку его объем во много раз меньше объема основной памяти. Он хранит лишь ограниченное количество блоков дан­ных и каталог (cache directory) — список их текущего соответствия областям основной памяти. Кроме того, кэшироваться может и не вся оперативная па­мять, доступная процессору: во-первых, из-за технических ограничений может быть ограничен максимальный объем кэшируемой памяти; во-вторых, некото­рые области памяти могут быть объявлены некэшируемыми (настройкой регис­тров чипсета или процессора). Если установлено оперативной памяти больше, чем возможно кэшировать, обращение к некэшируемой области ОЗУ будет мед­ленным. Таким образом, увеличение объема ОЗУ, теоретически всегда благотвор­но влияющее на производительность, может снизить скорость работы опреде­ленных компонентов, попавших в некэшируемую память. В ОС Windows память распределяется, начиная с верхних адресов физической памяти, в результате чего в некэшируемую область может попасть ядро ОС.

При каждом обращении к памяти контроллер кэш-памяти по каталогу про­веряет, есть ли действительная копия затребованных данных в кэше. Если она там есть, то это случай кэш-попадания (cache hit) и данные берутся из кэш­памяти. Если действительной копии там нет, это случай кэш-промаха (cache miss), и данные берутся из основной памяти. В соответствии с алгоритмом кэ­ширования блок данных, считанный из основной памяти, при определенных условиях заместит один из блоков кэша. От интеллектуальности алгоритма за­мещения зависит процент попаданий и, следовательно, эффективность кэши­рования. Поиск блока в списке должен производиться достаточно быстро, что­бы «задумчивостью» в принятии решения не свести на нет выигрыш от приме­нения быстродействующей памяти. Обращение к основной памяти может на­чинаться одновременно с поиском в каталоге, а в случае попадания — преры­ваться (архитектура Look aside). Это экономит время, но лишние обращения к основной памяти ведут к увеличению энергопотребления. Другой вариант: об­ращение к основной памяти начинается только после фиксации промаха (ар­хитектура Look Through), при этом теряется, по крайней мере, один такт про­цессора, зато экономится энергия.

Кэш в современных компьютерах строится по двухуровневой, а иногда и трех­уровневой схеме.

Первичный кэш, или L1 Cache (Level 1 Cache), — кэш 1 уровня, внутрен­ний (Internal, Integrated) кэш процессоров класса 486 и выше, а также не­которых моделей 386.