Допущено Министерством образования Российской Федерации в качестве методических рекомендаций по использованию учебников для 10–11 классов при организации изучения предмета на базовом и профильном уровнях
Авторы учебников серии «МГУ – школе» исходят из того, что математика едина, что целей обучения математике в нескольких разных профилях можно достичь, имея один учебник, по которому курс математики может изучаться более или менее основательно в зависимости от наличия учебного времени и поставленной цели обучения. Учебники серии «МГУ – школе» устроены так, чтобы по ним можно было работать и в классе с углубленным изучением математики, и в обычном классе. При этом в одном классе могут изучаться все пункты учебника и решаться все задачи, отмеченные в учебнике как необязательные для остальных классов. За счет курсов по выбору ученик может изучить дополнительные вопросы, как из учебника, так и не включенные в учебник и отражающие специфику профиля (например, какие-то специальные вопросы «математики для биолога» и пр.). Дидактические материалы и различные сборники конкурсных задач должны расширить задачный материал учебника и обеспечить тренинг, необходимый для поступления в вуз и обучения в нем.
В классах с меньшим числом недельных часов на математику, меньшими требованиями к математической подготовке выпускника и другими целями обучения необязательные пункты и необязательные задачи можно исключать из рассмотрения, при этом целостность курса не нарушается, а уменьшается уровень погружения в теоретические тонкости, уменьшается число доказываемых фактов, число технически и идейно сложных задач. Однако учебник позволяет ученику, не имеющему возможности обучаться математике на требуемом уровне, изучить необходимый материал по учебнику самостоятельно или под руководством и при консультировании учителем.
Учебник «Алгебра и начала анализа, 10» является частью учебного комплекта для 10-11 классов, включающего в настоящее время учебники для 10-11 классов. Методическое пособие «Алгебра и начала анализа, 10. Книга для учителя» готовится авторами к печати. Варианты примерного тематического планирования имеются в послесловии для учителя в каждом из учебников. В данных рекомендациях дано два варианта примерного тематического планирования для профилей, в которых математика не является профилирующим предметом (варианты I и II), и два варианта планирования для профилей, в которых математика является профилирующим предметом (варианты III и IV). В зависимости от уровня подготовки класса, и при наличии дополнительных учебных часов учитель вносит коррективы в примерное планирование, увеличивая время изучения трудных тем, увеличивая число изучаемых вопросов.
Работать по учебнику можно независимо от того, по каким учебникам велось преподавание до 10 класса, так как в начале года предполагается повторение наиболее важных вопросов программы девятилетней школы. Он включает следующий материал: действительные числа, рациональные уравнения и неравенства, корень степени n, степень положительного числа, логарифмы, простейшие показательные и логарифмические уравнения, тригонометрические функции, тригонометрические уравнения и неравенства. Учебник для 10 класса охватывает почти весь материал по алгебре и началам анализа, необходимый для поступления в вузы со средним уровнем требований по математике.
Учебник для 11 класса включает все вопросы программы, связанные с исследованием функций и построением их графиков, с производной и первообразной, с уравнениями, неравенствами, их системами. Здесь углубляются знания учащихся по ранее изученным
вопросам до уровня, необходимого для поступления в вузы, предъявляющие повышенные требования к математической подготовке школьников.
В учебниках для 10–11 классов содержится весь материал, предусмотренный программой по математике и проектом стандарта для классов с углубленным изучением математики в профильных классах, в том числе материал о комплексных числах, комбинаторике, об элементах теории вероятностей.
Нацеленность учебников на подготовку учащихся к поступлению в вуз подчеркнута тем, что оба эти учебника завершаются разделами «Задания для повторения», в которые включены задания для текущего повторения и некоторые задания из выпускных школьных экзаменов, а также конкурсных экзаменов прошлых лет с указанием вузов, в которых предлагались эти задания.
Список литературы
1. Алгебра и начала анализа: Учеб. для 10 кл. общеобразоват. учреждений /С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин. – М.: Просвещение, 2003.
2. Алгебра и начала анализа: Учеб. для 11 кл. общеобразоват. учреждений /С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин. – М.: Просвещение, 2003.
3. Алгебра: Учеб. для 7 кл. общеобразоват. учреждений /С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин. — М.: Просвещение, 2000.
4. Алгебра: Учеб. для 8 кл. общеобразоват. учреждений /С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин. — М.: Просвещение, 2001.
5. Алгебра: Учеб. для 9 кл. общеобразоват. учреждений /С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин. — М.: Просвещение, 2003.
6. Алгебра и математический анализ для 11 класса: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики /Н.Я.Виленкин, О.С.Ивашов-Мусатов, С.И.Шварцбурд. — М.: Просвещение, 1999.
Примерное тематическое планирование
Справа от параграфа или пункта указано число часов, отведенных на его изучение при каждом из вариантов планирования I, II, III, IV, рассчитанных соответственно на 2,5, 3, 4, 5 недельных часов в течение года.
10 класс
I II III IV
1. Действительные числа 7 7 11 12
1.1. Понятие действительного числа 2 2 2 2
1.2. Множества чисел 2 2 2 2
1.3. Доказательство числовых неравенств – – 1 2
1.4. Метод математической индукции – – – –
1.5. Перестановки 1 1 2 2
1.6. Размещения 1 1 2 2
1.7. Сочетания 1 1 2 2
2. Рациональные уравнения и неравенства 11 12 16 23
2.1. Рациональные выражения 1 1 1 1
2.2. Формулы бинома Ньютона, суммы и
разности степеней 1 1 2 3
2.3. Рациональные уравнения 1 2 2 2
2.4. Деление многочленов с остатком. Алгоритм Евклида– – – 2
2.5. Теорема Безу – – – 1
2.6. Корень многочлена – – – 2
2.7. Метод интервалов решения неравенств 2 2 3 3
2.8. Рациональные неравенства 2 2 3 3
2.9. Нестрогие неравенства 2 2 3 3
1 1 1 1 1 1 1 1 1 1 1 2 – – – – – 1 8 9 |
1 1 1 2 1 1 – – – – 1 1 1 1 2 2 1 1 |
2 2 2 3 1 1 |
2.10. Системы рациональных неравенств Контрольная работа № 1