Смекни!
smekni.com

Учебно-методическое пособие Ставрополь 2007 ббк 51. 1 (2) удк 614. 1/2 (06) (стр. 7 из 57)

Диаграмма 1. Динамика уровней рождаемости и смертности в Российской Федерации (на 1000 населения)

1980

1985

1990

1995

2000

2005

Рождаемость

15,8

16,6

13,4

9,3

8,7

10,5

Смертность

11,0

11,3

11,2

15,0

15,4

16,2

Диаграмма 2. Структура отдельных видов травматизма у детей до 14 лет. Виды травматизма: бытовой - 35,2%, уличный – 48,3%, школьный – 12,5%, спортивный – 2,7%, транспортный – 1,3%.

Диаграмма 3. Число психических болезней и расстройств поведения, выявленных на 100 тыс. населения с диагнозом, установленным впервые в жизни: Российская Федерация – 77,7случаев, Ставропольский край – 73,9 случаев, Краснодарский край – 28,0 случаев, Ростовская область – 118,0 случаев, Волгоградская область – 39,7 случаев.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА:

  • Лисицын Ю.П. Общественное здоровье и здравоохранение. М, 2002.
  • Лисицын Ю.П. Социальная гигиена (медицина) и организация здравоохранения. Казань, 1999, с. 288 - 289
  • Серенко А.Ф., Ермаков В.В. Социальная гигиена и организация здравоохранения, М, 1984, с.113 - 122.
  • Юрьев В.К., Куценко Г.И. Общественное здоровье и здравоохранение. С-П, 2000, с. 186 - 191.
  • Зайцев В.М. и соавт. Прикладная медицинская статистика. С.-П., 2003.
  • Общественное здоровье и здравоохранение. Под ред. В.А. Миняева, Н.И. Вишнякова М. «МЕДпресс-информ»., 2002.

ТЕМА 3. СРЕДНИЕ ВЕЛИЧИНЫ, МЕТОДИКА ИХ ВЫЧИСЛЕНИЯ И ОЦЕНКА ДОСТОВЕРНОСТИ

ЦЕЛЬ ЗАНЯТИЯ: Овладеть основами вариационной статистики, навыками вычисления и оценки достоверности средних величин

Методика проведения занятия: Студенты самостоятельно готовятся к практическому занятию по рекомендованной литературе и выполняют индивидуальное домашнее задание. Преподаватель в течение 10 минут проверяет правильность выполнения домашнего задания и указывает на допущенные ошибки, проверяет степень подготовки с использованием тестирования и устного опроса. Затем студенты самостоятельно вычисляют средние величины и оценивают их достоверность. В конце занятия преподаватель проверяет самостоятельную работу студентов.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Что представляет собой вариационный ряд, какие виды вариационных рядов выделяют в статистике, каковы элементы вариационного ряда.

2. Что такое средние величины, возможности их использования в медицине и практической деятельности врача.

3. Виды средних величин: мода, медиана, средняя арифметическая

4. Методика вычисления средней арифметической и параметров, характеризующих среднюю.

5. Какие математические законы позволяют теоретически обосновать достоверность статистических данных.

6. Как определить среднюю ошибку средней величины.

7. Что понимается под доверительной границей производных величин.

8. Оценка достоверности различий средних величин при помощи доверительного коэффициента t.

9. Оценка критерия достоверности при больших и малых выборках.

Краткое содержание темы:

В медико-социальных исследованиях наряду с абсолютными и относительными широко используются средние величины. Средняя величина – это совокупная обобщающая характеристика количественных признаков, она обычно обозначается буквой М или Х. Средние величины существенно отличаются от статистических коэффициентов:

1. Коэффициенты характеризуют признак, встречающийся только у некоторой части статистического коллектива, так называемый альтернативный признак, который может иметь место или не иметь место (рождение, смерть, заболевание, инвалидность).

Средние величины охватывают признаки, присущие всем членам коллектива, но в разной степени (вес, рост, дни лечения в больнице).

2. Коэффициенты применяются для измерения качественных признаков. Средние величины — для варьирующих количественных признаков.

Применение средних величин в медико-социальных исследо­ваниях широко используется при изучении физического раз­вития. Кроме того, средние величины применяются:

1. Для характеристики организации работы лечебно-профи­лактических учреждений и оценки их деятельности:

а) в поликлинике: показатели нагрузки врачей, посещаемость поликлиники, среднее число посещений на 1-м году жизни, среднее число детей на участке, среднее число посещений при определенном заболевании и т. д.;

б) в стационаре: среднее число дней работы койки в году; средняя длительность лечения при определенных заболеваниях и т. д.;

в) в органах санэпиднадзора: средняя площадь (или кубатура) на 1 человека, средние нормы питания (белки, жиры, углеводы, витамины, минеральные соли, калории) в дневном рационе возрастных групп у детей и взрослых и т. д.

2. Для определения медико-физиологических показателей орга­низма в норме и патологии в клинических и эксперименталь­ных исследованиях.

3. В специальных демографических и медико-социальных исследованиях.

Для расчета средней величины необходимо построить вариационный ряд — т. е. ряд числовых измерений определенного признака, отличающихся по своей величине.

Вариационные ряды бывают следующих видов:

а) ранжированный, неранжированный;

б) сгруппированный, несгруппированный;

в) прерывный, непрерывный.

Ранжированный ряд — упорядоченный ряд; варианты располагаются последовательно по нарастанию или убыванию числовых значений.

Неранжированный ряд — варианты располагаются бессистемно.

Прерывный (дискретный) ряд — варианты выражены в виде целых (дискретных) чисел (окна в избе).

Непрерывный ряд – варианты могут быть выражены дробными числами.

Несгруппированный ряд – каждому значению варианты соответствует определенное число частот.

Сгруппированный ряд (интервальный) – варианты соединены в группы, объединяющие их по величине в пределах определенного интервала.

В статистике принято выделять следующие виды средних величин: мода (Мо), медиана (Ме) и средняя арифметическая (М). Мода – величина варьирующего признака, наиболее часто встречающаяся в совокупности. В вариационном ряду это варианта, имеющая наибольшую частоту встречаемости. Обычно мода является величиной довольно близкой к средней арифметической, совпадает с ней при полной симметрии распределения. Медиана – варианта, делящая вариационный ряд на две равные половины. При нечетном числе наблюдений медианой является варианта, имеющая в вариационном ряду порядковый номер (n + 1): 2. Средняя арифметическая величина (М) – в отличие от моды и медианы опирается на все произведенные наблюдения, поэтому является важной характеристикой для всего распределения.

В зависимости от вида вариационного ряда используется тот или иной способ расчета средней. Средняя арифметическая для простого ряда, где каждая варианта встречается один раз, вычисляется по формуле: М =

, где
- знак суммы, V –отдельные значения вариант, n –число наблюдений. Средняя арифметическая взвешенная определяется по формуле: М=
, где
- знак суммы, V –отдельные значения вариант, n –число наблюдений, р – частота встречаемости вариант. Одним из наиболее простых и достаточно точных способов расчета средней арифметической является способ моментов, основанный на том, что алгебраическая сумма отклонений каждой варианты вариационного ряда от средней арифметической равна нулю. М= А + i
, где А – условно принятая средняя или мода, а- отклонение каждой варианты от условно принятой средней, р –частота встречаемости вариант, n –число наблюдений, i – интервал или расстояние между соседними вариантами. Основные свойства средней величины: 1) имеет абстрактный характер, так как является обобщающей величиной: в ней стираются случайные колебания; 2) занимает срединное положение в ряду (в строго симметричном ряду); 3) сумма отклонений всех вариант от средней величины равна нулю. Данное свойство средней величины используется для проверки правильности расчета средней. Она оценивается по уровню колеблемости вариационного ряда. Критериями такой оценки могут служить: амплитуда (разница между крайними вариантами); среднее квадратическое отклонение, показывающее, как отличаются варианты от рассчитанной средней величины; коэффициент вариации.

Среднеквадратическое отклонение (

) наиболее точно характеризует степень разнообразия варьирующего признака, без чего нельзя достаточно полно охарактеризовать явление. Для простого вариационного ряда (р =1) среднеквадратическое отклонение расчитывается по формуле
. Для взвешенного вариационного ряда по формуле: