Паскаль писал о циклоиде:
Рулетта является линией столь обычной, что после прямой и окружности нет более часто встречающейся линии; она так часто вычерчивается перед глазами каждого, что надо удивляться тому, как не рассмотрели её древние… ибо это не что иное, как путь, описываемый в воздухе гвоздём колеса.
Новая кривая быстро завоевала популярность и подверглась глубокому анализу, в котором участвовали Декарт, Ферма, Ньютон, Лейбниц, братья Бернулли и другие корифеи науки XVII—XVIII веков. На циклоиде активно оттачивались методы появившегося в те годы математического анализа.
Тот факт, что аналитическое исследование циклоиды оказалось столь же успешным, как и анализ алгебраических кривых, произвёл большое впечатление и стал важным аргументом в пользу «уравнения в правах» алгебраических и трансцендентных кривых.
Уравнение в декартовых прямоугольных координатах:
параметрическое уравнение:
· Длина всей кривой 6R.
· Астроида является огибающей семейства отрезков постоянной длины, концы которых расположены на двух взаимно перпендикулярных прямых.
· Астроида является алгебраической кривой 6-го порядка.
Лемниска́та Берну́лли — плоская кривая, геометрическое место точек, произведение расстояний от которых до двух заданных точек (фокусов) постоянно и равно квадрату половины расстояния между фокусами.
Лемниската по форме напоминает восьмёрку или символ бесконечности. Её название происходит от греч. λημνισχος — лента, повязка. В Древней Греции «лемнискатой» называли бантик, с помощью которого прикрепляли венок к голове победителя на спортивных играх. Эту лемнискату называют в честь швейцарского математика Якоба Бернулли, положившего начало её изучению.
Уравнение лемнискаты впервые опубликовано в статье Curvatura Laminae Elasticae Якоба Бернулли в журнале Acta eruditorum в 1694 году. Бернулли назвал эту кривую lemniscus и он не знал, что четырнадцатью годами ранее Джованни Кассини уже исследовал более общий случай[1]. Квадратуру лемнискаты впервые выполнил Джюлио-Карло Фаньяно (англ.), опубликовав в 1718 году статью Metodo per misurare la lemniscata и положив тем самым начало изучению эллиптических интегралов, продолженное впоследствии Леонардом Эйлером[2]. Некоторые свойства кривой были также исследованы Якобом Штейнером в 1835 году
Рассмотрим простейший случай: если расстояние между фокусами 2c, расположены они на оси OX, и начало координат делит отрезок между ними пополам, то следующие уравнения задают лемнискату:
Проведя несложные преобразования, можно получить явное уравнение:
Это единственный вариант рациональной параметризации кривой. Уравнение полностью описывает кривую, когда параметр пробегает всю вещественную прямую: от
до . При этом, когда параметр стремится к , точка кривой стремится к (0;0) из второй координатной четверти, а когда параметр стремится к , то — из четвёртойВывод уравнения :
Уравнение лемнискаты в полярной системе
подставим в формулы перехода к полярной системе координат
возведённые в квадрат:Рассмотрим первое уравнение:
Используем тригонометрические формулы
и :Используем ещё одно легко выводимое тригонометрическое соотношение
:После преобразований:
Извлекаем корень из обеих частей равенства:
Если произвести замену
, то получаем искомое выражение для x:Второе уравнение выводится аналогично с применением формулы
.Чтобы задать лемнискату по двум произвольным точкам, можно не выводить уравнение заново, а определить преобразование координат, при котором старый (данный) фокусный отрезок переходит в новый, и воздействовать на представленные уравнения этим преобразованием.
Лемниската Бернулли является частным случаем овала Кассини при a = c, синусоидальной спирали с индексом n = 2 и лемнискаты Бута при c = 0, поэтому она наследует некоторые свойства этих кривых.
Гравитационное свойство лемнискаты