Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с нашей секущей плоскостью. И т. д.
На рисунке 10 показано построение сечения четырехугольной призмы плоскостью, проходящей через прямую а в плоскости нижнего основания призмы и точку А на одном из боковых ребер.
6. Прямая призма
Призма называется прямой, если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется наклонной.
У прямой призмы боковые грани являются прямоугольниками. При изображении прямой призмы на рисунке боковые ребра обычно проводят вертикально (рис. 11).
Прямая призма называется правильной, если ее основания являются правильными многоугольниками.Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.
Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. .на длину бокового ребра.
Доказательство. Боковые грани прямой призмы — прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна
S=a1l+a1l+...+anl=pl,
где a1,..., an — длины ребер основания, р — периметр основания призмы, а 1 — длина боковых ребер. Теорема доказана.
7. Параллелепипед
Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани — параллелограммы.
На рисунке 12, а изображен наклонный параллелепипед, а на рисунке 12, б — прямой параллелепипед.Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.
Т е о р е м а 19.2. У параллелепипеда противолежащие грани параллельны, и равны.
Доказательство. Рассмотрим какие-нибудь две противолежащие грани параллелепипеда, например А1А2А'2А'1 и A3A4A'4A'3. (рис. 13). Так как все грани параллелепипеда — параллелограммы, то прямая A1A2 параллельна прямой А4А3, а прямая А1А'1 параллельна прямой А4А4'. Отсюда следует, что плоскости рассматриваемых граней параллельны.
Из того, что грани параллелепипеда — параллелограммы, следует, что отрезки А1А4, А1'А4', A'2A'3 и A2A3 — параллельны и равны. Отсюда заключаем, что грань А1А2А'2А'1 совмещается параллельным переносом вдоль ребра А1А4. с гранью А3А4А'4А'3. Значит, эти грани равны.
Аналогично доказывается параллельность и равенство любых других противолежащих граней параллелепипеда. Теорема доказана.
8. Центральная симметрия параллелепипеда
Теорема 19.3. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.
Доказательство. Рассмотрим какие-нибудь две диагонали параллелепипеда, например А1А'3 и A4A'2 (рис. 14). Так как четырехугольники А1А2А3А4 и A2A'2A'3A3 — параллелограммы с общей стороной A2A3, то их стороны А1А4 и A'2A'3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней параллелепипеда по параллельным прямым A1A'2 и A4A'3. Следовательно, четырехугольник A4A1A'2A'3— параллелограмм. Диагонали параллелепипеда A1A'3 и A4A'2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам.
Аналогично доказывается, что диагонали A1A'3 и A2A'4, а также диагонали A1A'3 и A3A'1 пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам. Теорема доказана.
Из теоремы 19.3 следует, что точка пересечения диагоналей параллелепипеда является его центром симметрий.
9. Прямоугольный параллелепипед
Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани — прямоугольники.Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.
Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями). У прямоугольного параллелепипеда три измерения.
Теорема 19.4. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.
Доказательство. Рассмотрим прямоугольный параллелепипед ABCDA'B'C'D' (рис. 15). Из прямоугольного треугольника AC'C по теореме Пифагора получаем:
AC'2 = AC2 + CC'2.
Из прямоугольного треугольника АСВ по теореме Пифагора получаем
АС2 = АВ2 + ВС2.
Отсюда AC'2 =CC'2 +AB2 + BC2.
Ребра АВ, ВС и СС' не параллельны, а, следовательно, их длины являются линейными размерами параллелепипеда. Теорема доказана.
10. Симметрия прямоугольного параллелепипеда
У прямоугольного параллелепипеда, как у всякого параллелепипеда, есть центр симметрии — точка пересечения его диагоналей. У него есть также три плоскости симметрий, проходящие через центр симметрии параллельно граням. На рисунке 16 показана одна из таких плоскостей. Она проходит через середины четырех параллельных ребер параллелепипеда. Концы ребер являются симметричными точками.
Если у параллелепипеда все линейные размеры разные, то у него нет других плоскостей симметрии, кроме названных.
Если же у параллелепипеда два линейных размера равны, то у него есть еще две плоскости симметрии. Это плоскости диагональных сечений, показанные на рисунке 17.
Если у параллелепипеда все линейные размеры равны, т. е. он является кубом, то у него плоскость любого диагонального сечения является плоскостью симметрии. Таким образом, у куба девять плоскостей симметрии.
11. Пирамида
Пирамидой называется многогранник, который состоит из плоского многоугольника — основания пирамиды, точки, не лежащей в плоскости основания,— вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания (рис. 18).Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами.
Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань — треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды.
Высотой пирамиды, называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания.
Пирамида называется n-угольной, если ее основанием является n-угольник. Треугольная пирамида называется также тетраэдром.
У пирамиды, изображенной на рисунке 18, основание — многоугольник А1А2 …An, вершина пирамиды – S, боковые ребра — SА1, S А2, …, S Аn, боковые грани – DSА1А2, DSА2А3, ... .
В дальнейшем мы будем рассматривать только пирамиды с выпуклым многоугольником в основании. Такие пирамиды являются выпуклыми многогранниками.
12. Построение пирамиды и ее плоских сечений
В соответствии с правилами параллельного проектирования изображение пирамиды строится следующим образом. Сначала строится основание. Это будет некоторый плоский многоугольник. Затем отмечается вершина пирамиды, которая соединяется боковыми ребрами с вершинами основания. На рисунке 18 показано изображение пятиугольной пирамиды.
Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники (рис. 19). В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды (рис. 20).
Сечение пирамиды плоскостью с заданным следом g на плоскости основания строится так же, как и сечение призмы.
Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью.
Если на грани, не параллельной следу g, известна какая-нибудь точка А, принадлежащая сечению, то сначала строится пересечение следа g секущей плоскости с плоскостью этой грани — точка D на рисунке 21. Точка D соединяется с точкой А прямой. Тогда отрезок этой прямой, принадлежащий грани, есть пересечение этой грани с секущей плоскостью. Если точка А лежит на грани, параллельной следу g, то секущая плоскость пересекает эту грань по отрезку, параллельному прямой g. Переходя к соседней боковой грани, строят ее пересечение с секущей плоскостью и т. д. В итоге получается требуемое сечение пирамиды.