На рисунке 22 построено сечение четырехугольной пирамиды плоскостью, проходящей через сторону основания и точку А на одном из ее боковых ребер.
13. Усеченная пирамида
T е о р е м а 19.5. Плоскость, пересекающая пирамиду и параллельная ее основанию, отсекает подобную пирамиду.
Доказательство. Пусть S — вершина пирамиды, А — вершина основания и А'— точка пересечения секущей плоскости с боковым ребром SA (рис. 23). Подвергнем пирамиду преобразованию гомотетии относительно вершины S с коэффициентом гомотетии
k= SA'/ SA
При этой гомотетии плоскость основания переходит в параллельную плоскость, проходящую через точку А', т. е. в секущую плоскость, а следовательно, вся пирамида — в отсекаемую этой плоскостью часть. Так как гомотетия есть преобразование подобия, то отсекаемая часть пирамиды является пирамидой, подобной данной. Теорема доказана.
По теореме 19.5 плоскость, параллельная плоскости основания пирамиды и пересекающая ее боковые ребра, отсекает от нее подобную пирамиду. Другая часть представляет собой многогранник, который называется усеченной пирамидой (рис. 24). Грани усеченной пирамиды, лежащие в параллельных плоскостях, называются основаниями; остальные грани называются боковыми гранями. Основания усеченной пирамиды представляют собой подобные (более того, гомотетичные) многоугольники, боковые грани — трапеции.
14. Правильная пирамида
Пирамида называется правильной, если ее основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Осью правильной пирамиды называется прямая, содержащая ее высоту. Очевидно, у правильной пирамиды боковые ребра равны; следовательно, боковые грани — равные равнобедренные треугольники.
Высота боковой грани правильной пирамиды, проведенная из её вершины, называется апофемой. Боковой поверхностью пирамиды называется сумма площадей ее боковых граней.
Т е о р е м а 19.6. Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему.
Доказательство. Если сторона основания а, число сторон п, то боковая поверхность пирамиды равна:
(а1/2)ап=а1п/2= р1/2'
где I — апофема, a p — периметр основания пирамиды. Теорема доказана.
Усеченная пирамида, которая получается из правильной пирамиды, также называется правильной. Боковые грани правильной усеченной пирамиды — равные равнобокие трапеции; их высоты называются апофемами.
15. Правильные многогранники
Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер. )
Существует пять типов правильных выпуклых многогранников (рис.25): правильный тетраэдр (1), куб (2), октаэдр (3), додекаэдр (4); икосаэдр (5).
У правильного тетраэдра грани — правильные треугольники; в каждой вершине сходится по три ребра. Тетраэдр представляет собой треугольную пирамиду, у которой все ребра равны.
У куба все грани — квадраты; в каждой вершине сходится по три ребра. Куб представляет собой прямоугольный параллелепипед с равными ребрами.
У октаэдра грани — правильные треугольники, но в отличие от тетраэдра в каждой его вершине сходится по четыре ребра.
У додекаэдра грани — правильные пятиугольники. В каждой вершине сходится по три ребра.
У икосаэдра грани — правильные треугольники, но в отличие от тетраэдра и октаэдра в каждой вершине сходится по пять ребер.III. Практическая часть.
Задача 1.
Из точек А и В, лежащих в гранях двугранного угла, опущены перпендикуляры АА\ и ВВ\ на ребро угла. Найдите длину отрезка АВ, если АА1=а, ВВ1=b, А1В1=с и двугранный угол равен а (рис. 26).
Решение. Проведем прямые A1C||BB1 и ВС||А1В1. Четырехугольник А1В1ВС - параллелограмм, значит АА1==ВВ1=b. Прямая А1В1 перпендикулярна плоскости треугольника АA1C, так как она перпендикулярна двум прямым в этой плоскости АА1 и СА1. Следовательно, параллельная ей прямая ВС тоже перпендикулярна этой плоскости. Значит, треугольник АВС — прямоугольный с прямым углом С. По теореме косинусовAC2=AA12+A1C2—2AA1•A1C•cos a=a2+b2—2abcos a.
По теореме Пифагора
АВ =AC2 + ВС2 = a2 + b2— 2ab cos a + с2.
Задача 2.
У трехгранного угла (abc) двугранный угол при ребре с прямой, двугранный угол при ребре b равен j, а плоский угол (bс) равен g (j, g <p/2). Найдите два других плоских угла: a= Ð (ab), b=Ð (ac).
Решение. Опустим из произвольной точки А ребра а перпендикуляр АВ на ребро b и перпендикуляр АС на ребро с (рис. 27). По теореме о трех перпендикулярах СВ — перпендикуляр к ребру b.Из прямоугольных треугольников ОАВ, ОСВ, АОС и АВС получаем:
tg a =AB/OB=(BC/ cos j)/(BC/tg g)= tg g/ cos j
tg b =AC/OC=BC tg j / (BC/sin g)= tg g sin g
Задача 3.
В наклонной призме проведено сечение, перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если
периметр сечения равен р, а боковые ребра равны l.Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 28). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.
Задача 4.
Боковое ребро пирамиды разделено на четыре равные части и через точки деления проведены плоскости, параллельные основанию. Площадь основания равна 400 см2. Найдите площади сечений.
Решение. Сечения подобны основанию пирамиды с коэффициентами подобия ¼, 2/4, и ¾. Площади подобных фигур относятся как квадраты линейных размеров. Поэтому отношения площадей сечений к площади основания пирамиды есть (¼)2, (2/4)2, и (¾)2. Следовательно, площади сечений равны
400 (¼ )2 =25 (см2),
400 (2/4)2 =100 (см2),
400 (¾)2 =225 (см2).
Задача 5.
Докажите, что боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.
Решение. Боковые грани усеченной пирамиды — трапеции с одним и тем же верхним основанием а, нижним b и высотой (апофемой) l. Поэтому площадь одной грани равна ½ (а + b)l. Площадь всех граней, т. е. боковая поверхность, равна ½ (аn + bn)l, где n — число вершин у основания пирамиды, an и bn — периметры оснований пирамиды.
IV. Заключение
Благодаря этой работе я обобщила и систематизировала знания, полученные за курс обучения в 11 классе, ознакомилась с правилами выполнения творческой работы, получила новые знания и применила их на практике.
Хочу отметить 3 наиболее понравившиеся мне книги:. А.В. Погорелов «Геометрия», Г. Якушева «Математика - справочник школьника», Л.Ф. Пичурин «За страницами учебника геометрии». Эти книги помогли мне больше, чем другие.
Мне бы хотелось чаще использовать свои новые полученные знания на практике.
V. Литература
1. А.В. Погорелов «Геометрия». – М.: Просвещение, 1992
2. Г. Якушева «Математика - справочник школьника». М.: Слово, 1995
3. Л.Д. Кудрявцев «Курс математического анализа» т.1, Москва 1981
4. Л.Ф. Пичурин «За страницами учебника геометрии». – М.: Просвещение, 1990
5. И.Н. Башмаков «Геометрия».