Смекни!
smekni.com

Применение подобия к доказательству теорем и решению задач (Обобщение теоремы Фалеса. Теоремы Чевы и Менелая.) (стр. 1 из 2)

Применение подобия к доказательству теорем и решению задач (Обобщение теоремы Фалеса. Теоремы Чевы и Менелая.)

Содержание:

1. Введение;

2. Обобщение теоремы Фалеса;

(a) Формулировка;

(b) Доказательство;

3. Теорема о пропорциональных отрезках;

4. Теорема Чевы;

(a) Формулировка;

(b) Доказательство;

5. Теорема Менелая;

(a) Формулировка;

(b) Доказательство;

6. Задачи и их решения;

7. Источники информации;

8. Вывод.

Введение.

Мой реферат посвящен применению подобия к доказательству теорем и решению задач, а именно глубоко изучить обобщение теоремы Фалеса, теоремы Чевы и Менелая, которые не изучаются в школьной программе. Теме подобия, которая проходится в восьмом классе, отведено всего лишь 19 часов, что недостаточно для изучения этой темы более углубленно. В тему подобия входят: определение подобных треугольников, признаки подобия, отношение площадей подобных треугольников, средняя линия треугольника, пропорциональные отрезки и т.д.

Напомню определение подобных треугольников:

Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого. Оказывается, что у подобных треугольников не только отношение сходственных сторон, но и отношение любых других сходственных отрезков равно коэффициенту подобия. Например, отношение сходственных биссектрис AD и A1D1, т.е. биссектрис равных углов A и A1в подобных треугольниках ABC и A1B1C1, равно коэффициенту подобия k, отношение сходственных медиан AM и A1M1 равно k и точно так же отношение сходственных высот AH и A1H1 равно k.

С помощью данного материала, который изучается в школьной программе, мы можем решать довольно узкий круг задач. При создании своего реферата я собираюсь углубить свои знания по данной теме, что позволит решать более широкий круг задач на пропорциональные отрезки. В этом и заключается актуальность моего реферата.

Одна из теорем – это обобщение теоремы Фалеса. Сама теорема Фалеса проходится в восьмом классе. Но главными теоремами являются теоремы Чевы и Менелая.

Обобщение теоремы Фалеса.

Формулировка:

Параллельные прямые, пересекающие две данные прямые, отсекают на этих прямых пропорциональные отрезки.

Доказать:

=…=
.

Доказательство:

Докажем, например, что

Рассмотрим два случая:

1 случай

Прямые a и b параллельны. Тогда четырехугольники А1А2В2В1 и А2А3В3В2 – параллелограммы. Поэтому А1А2=В1В2 и А2А3=В2В3, откуда следует, что


2 случай

Прямые a и b не параллельны. Через точку А1 проведем прямую с, параллельную прямой b. Она пересечет прямые А2В2 и А3В3 в некоторых точках С2 и С3. Треугольники А1А2С2 и А1А3С3подобны по двум углам (угол А1 – общий, углы А1А2С2 и А1А3С3 равны как соответственные при параллельных прямых А2В2 и А3В3 секущей А2А3), поэтому


Отсюда по свойству пропорций получаем:


(1)

С другой стороны, по доказанному в первом случае имеем А1С2=В1В2, С2С3=В2В3. Заменяя в пропорции (1) А1С2 на В1В2 и С2С3 на В2В3, приходим к равенству


(2)

что и требовалось доказать.

Теорема о пропорциональных отрезках в треугольнике.

На сторонах АС и ВС треугольника АВС отмечены точки К и М так, что АК:КС=m:n, BM:MC=p:q. Отрезки АМ и ВК пересекаются в точке О.

Доказать:

Доказательство:

Через точку М проведем прямую, параллельную ВК. Она пересекает сторону АС в точке D, и согласно обобщению теоремы Фалеса

Пусть АК=mx. Тогда в соответствии с условием задачи КС=nx, а так как KD:DC=p:q, то

Снова воспользуемся обобщением теоремы Фалеса:

Аналогично доказывается, что

.

Теорема Чевы.

Теорема названа в честь итальянского математика Джованни Чевы, который доказал её в 1678 году.

Формулировка:

Если на сторонах АВ, ВС и СА треугольника АВС взяты соответственно точки С1, А1 и В1, то отрезки АА1, ВВ1 и СС1 пересекаются в одной точке тогда и только тогда, когда

(3)

Доказать:

1.

(3)

2.отрезки АА1, ВВ1 и СС1 пересекаются в одной точке

Доказательство:

1. Пусть отрезки АА1, ВВ1 и СС1 пересекаются в одной точке О. Докажем, что выполнено равенство (3). По теореме о пропорциональных отрезках в треугольнике имеем:

и
.

Левые части этих равенств одинаковы, значит, равны и правые части. Приравнивая их, получаем

.

Разделив обе части на правую часть, приходим к равенству (3).

2. Докажем обратное утверждение. Пусть точки С1, А1 и В1 взяты на сторонах АВ, ВС и СА так, что выполнено равенство (3). Докажем, что отрезки АА1, ВВ1 и СС1 пересекаются в одной точке. Обозначим буквой О точку пересечения отрезков АА1 и ВВ1 и проведем прямую СО. Она пересекает сторону АВ в некоторой точке, которую обозначим С2. Так как отрезки АА1, ВВ1 и СС1 пересекаются в одной точке, то по доказанному в первом пункте

. (4)

Итак, имеют место равенства (3) и (4).

Сопоставляя их, приходим к равенству

=
, которое показывает, что точки C1 и C2 делят сторону AB в одном и том же отношении. Следовательно, точки C1 и C2 совпадают, и, значит, отрезки АА1, ВВ1 и СС1 пересекаются в точке O. Теорема доказана.

Теорема Менелая.

Формулировка:

Если на сторонах АВ и ВС и продолжении стороны АС (либо на продолжениях сторон АВ, ВС и АС) взяты соответственно точки С1, А1, В1, то эти точки лежат на одной прямой тогда и только тогда, когда

(5)

Доказать:

1.

(5)

2. точки А1,С1,В1 лежат на одной прямой

Доказательство:

1. Пусть точки А1,В1 и С1 лежат на одной прямой. Докажем, что выполнено равенство (5). Проведем AD,BE и CF параллельно прямой В1А1 (точка D лежит на прямой ВС). Согласно обобщению теоремы Фалеса имеем:

и

Перемножая левые и правые части этих равенств, получаем

, откуда
,

т.е. выполнено равенство (5).

2. Докажем обратное утверждение. Пусть точка В1 взята на продолжении стороны АС, а точки С1 и А1 – на сторонах АВ и ВС, причем так, что выполнено равенство (5). Докажем, что точки А1,В1 и С1 лежат на одной прямой, то по доказанному а первом пункте

(6)

Сопоставляя (5) и (6), приходим к равенству

=
, которое показывает, что точки А1 и А2 делят сторону ВС в одном и том же отношении. Следовательно, точки А1 и А2 совпадают, и, значит, точки А1,В1 и С1 лежат на одной прямой. Аналогично доказывается обратное утверждение в случае, когда все три точки А1,В1 и С1 лежат на продолжениях соответствующих сторон. Теорема доказана.

Решение задач.

Задача №1.