Для предохранения мазей от расслаивания или расплавления в условиях жаркого климата или высокой температуры окружающего воздуха допускается прибавление к основе до 10% воска, парафина или озокерита с соблюдением установленного процентного содержания лекарственных веществ в мази и получения однородной системы.
Приготовление мазей в условиях фармацевтических предприятий складывается из следующих основных операций:
- подготовка лекарственных веществ и основы;
- введение лекарственных веществ в основу;
- гомогенизация мази;
- стандартизация;
- фасовка.
Подготовка лекарственных препаратов и мазевой основы. Подготовка лекарственных препаратов заключается в их измельчении на одной из машин, просеивании через сито (с заданным размером частиц), перемешивании. Если нужно, препарат растворяют в основе или в воде. Подготовка основы включает в себя процессы растворения или сплавления ее компонентов с последующим фильтрованием для удаления механических примесей. Плавящиеся основы и их компоненты (вазелин, ланолин, воск, эмульгатор Т2, эмульгатор № 1, сорбитанолеат, эмульсионные воски и др.) расплавляют в электрокотлах марок ЭК-40, ЭК-60, ЭК-125 и ЭК-250 или в котлах с паровыми рубашками марок ПК-125 и ПК-250. Они могут быть цилиндрические или сферические, иметь сливные краны и устройства для опрокидывания.
Для расплавления основ и их компонентов используют паровые змеевики, паровые иглы.
При изготовлении мазей на эмульсионной основе иногда вначале готовят основу, а затем мазь. При изготовлении эмульсионной основы ПАВ вводят в ту фазу, в которой оно больше растворимо. Эмульгирование проводят в реакторах с мешалками, в смесителях и т. п. Масляную основу предварительно расплавляют в паровом котле или другим способом.
Введение лекарственных веществ в основу осуществляется в зависимости от их физико-химических свойств. Измельченные твердые препараты или их водные растворы добавляют к основе при постоянном перемешивании.
На рис. 1 изображена схема реактора, смешивающего густые продукты с вязкостью до 200 Н-с/см2. Реактор имеет корпус (1) ' полусферическим дном. Корпус реактора закрывается выпуклой крышкой (2), в которой смонтированы загрузочная воронка, смотровое окно, клапаны, патрубки и штуцера для введения различных веществ. Крышка корпуса реактора поднимается и опускается с помощью траверсы (9) и гидравлических опор (10). Внутри корпуса реактора помещена мешалка якорного типа (3) с лопатками по профилю корпуса, охватывающими всю полезную поверхность. Мешалка (4) с лопастями вращается в сторону, противоположную вращению якорной мешалки. Мешалки 3 и 4 вращаются соосными валами (6) с помощью гидродвигателей (7). В корпусе реактора смонтирована и турбинная мешалка (5), вращаемая с помощью электродвигателя (8). Наличие трех мешалок обеспечивает хорошее перемешивание и перетирание компонентов мази. Аппарат разгружается через шаровой клапан (11), корпус реактора имеет рубашку (12), к которой подводится горячая вода с температурой до 95°С или холодная вода с температурой до 12°С. Реактор управляется со специального пульта.
Смешивание лекарственных веществ с основой может осуществляться также в котлах с паровыми рубашками или злектрообогревом, со съемными переносными мешалками (типа якорной, пропеллерной, планетарной, рамной), способными перемешивать мазь, снимая ее со стенок и дна емкости.
Для приготовления мазей может быть использован универсальный смеситель «Юнитрон» фирмы «А. Джонсон и К» (Лондон). На рис. 2 показана основная схема смесителя «Юнитрон». Своеобразной формы неподвижный резервуар (1) закрывается вакуумплотной крышкой (2) с гидравлическим управлением. В крышке имеются впускные каналы, система для мойки резервуара без его вскрытия. В центре резервуара вмонтирован вал (3), приводящий в движение сменную смесительную насадку (4) и вращающийся скребок (5). В резервуаре имеется нижнее выпускное отверстие (6) и отверстие (7) для подключения гомогенизатора или другого вставного оборудования. Смешивание компонентов в резервуаре можно производить при различных температурах (от +110°C до температуры ниже окружающей среды), в среде инертного газа, с постоянным измерением температуры смеси, содержания в ней влаги, определением массы и других свойств. Управление всеми операциями выполняется с отдельного пульта, на котором могут быть установлены записывающие устройства.
Гомогенизация мазей. Для гомогенизации мазей в основном используют машины валковые и с жерновами.
Валковые мазетерки могут иметь два или три валка с гладкой поверхностью, вращающиеся навстречу друг другу с разной скоростью.
Существенно интенсифицировать процессы, протекающие при приготовлении таких дисперсных систем, как эмульсионные, суспензионные и комбинированные мази, можно путем применения РПА — роторно-пульсационных аппаратов. Схема одной из разновидностей РПА изображена на рис. 3. РПА состоит из ротора (1), статора (2), помещенных в корпусе (3). Ротор и статор выполнены в виде концентрически расположенных рядов зубьев. Величина зазора между рядами зубьев ротора и статора составляет 0,15—0,2 мм. Кроме того, рабочие поверхности ротора и статора делают рифлеными. Во внутренней зоне ротора устроены лопасти (4), обеспечивающие перемешивание и транспортировку обрабатываемой мази, поступающей в патрубок (5) и удаляемой после обработки через патрубок (6).
При приготовлении мазей лекарственных препаратов, являющихся кристаллическими веществами с весьма прочной кристаллической решеткой (борная кислота, стрептоцид, некоторые антибиотики и др.), применение РПА не исключает предварительного тонкого измельчения препаратов. Однако приготовление мазей с помощью РПА во всех случаях приводит к значительной экономии времени, электроэнергии, снижению потерь компонентов по сравнению с традиционными методами приготовления.
Процесс изготовления мазей может быть периодическим и непрерывным. Периодический процесс может быть одно-, двух-, трехступенчатым и т. д., в зависимости от числа аппаратов, в которых последовательно проводят отдельные стадии процесса получения мазей.
Завершающей стадией любого технологического процесса является контроль качества продукции. Контроль осуществляется практически на каждой стадии технологического процесса.
Для качественной идентификации и определения количества лекарственного вещества, содержащегося в готовой мази, используют методики, приведенные в соответствующих статьях ГФ, ГОСТах, ТУ и др. Отклонения в массе мазей, расфасованных в баночки или тубы, проверяют путем взвешивания 10 доз.
Иногда в соответствии с технической документацией требуется определить рН мазей. Методика определения рН мазей разработана В. М. Грецким (1966). Навеску мази заливают дистиллированной водой (50 мл) при температуре 50—60°С и встряхивают в вибраторе в течение 30 мин. Полученную вытяжку отфильтровывают и потенциометрически определяют рН.
Однородность мазей до сих пор определяют органолептически по методике, разработанной Ю. А. Благовидовой и О. В. Красновой (1968) и включенной в ГФ Х. Для определения однородности 4 пробы мази по 0,02— 0,03 г помещают на два предметных стекла (по 2 пробы на каждом), покрывают вторым предметным стеклом и сжимают до получения пятен размером около 2 см. При рассмотрении пятен невооруженным глазом (на расстоянии 30 см от глаза) в одной из проб могут обнаруживаться видимые частицы. При обнаружении частиц в большом числе проб, определение повторяют на 8 пробах (4 стекла). При этом допускается наличие видимых частиц не более чем в двух пробах. Эта методика несовершенна и не дает конкретного представления о степени дисперсности лекарственных препаратов в мазях.
Упаковку мазей можно производить в емкости из различных материалов, не допускающих адсорбции, диффузии содержимого, загрязнения его материалом упаковки, обеспечивающих удобство применения, возможности этикетирования. Мази, содержащие воду, летучие вещества, должны упаковываться в емкости, предотвращающие их испарение. В условиях аптек небольшие количества мазей, приготовленных по рецептам, помещают в стеклянные или фарфоровые баночки емкостью от 10 до 100 мл. Наиболее удобными являются стеклянные баночки с навинчивающимися пластмассовыми крышками.
Баночки из стекла, обладая рядом несомненных преимуществ (химическая и биологическая инертность по отношению ко многим лекарственным препаратам, непроницаемость для них, возможность сравнительно легкой герметизации и пр.) имеют и недостатки: малая механическая прочность, трудоемкость мойки, стерилизации и др.
В нашей стране для упаковки мазей промышленность также производит баночки из полимерных материалов, например полистирола емкостью 10, 20, 30, 50 и 100 мл. Баночки закрываются крышками, навинчивающимися или под обтяжку.
В баночки из стекла и полимеров мази могут быть расфасованы с помощью наполнительной машины (рис. 4), применяемой для фасовки кремов. В корпусе (1) машины расположен электродвигатель (2), соединенный системой передач (3) с наполнительной головкой (4). Мазь загружается в конический бункер (8) из нержавеющей стали. Для предотвращения загустевания мази и ее подачи к наполнительной головке в бункере установлена шнековая мешалка (7), приводимая в движение электродвигателем через передачу (6). Мазь засасывается плунжетом наполнительной головки и нагнетается им в баночку (5), устанавливаемую на столик в перевернутом виде. Производительность машины до 60 баночек в минуту.