Смекни!
smekni.com

работа по геодезии на тему: «Планово-геодезическая основа для строительства промышленного комплекса» (стр. 6 из 7)

Рис.7.2

Пояснительные подписи служат для дополнительной характеристики объектов: у брода через реку подписывают глубину и характер грунта, у моста - его длину, ширину и грузоподъемность, у дороги - ширину проезжей части и характер покрытия и т.д.

В традиционной картографии принято деление всех объектов местности на 8 больших классов (сегментов):

- математическая основа,

- рельеф,

- гидрография,

- населенные пункты,

- предприятия,

- дорожная сеть,

- растительность и грунты,

- границы и подписи.

Таблицы условных знаков для карт разных масштабов составляются в соответствии с этим делением объектов; они утверждаются государственными органами и издаются в форме обязательных для исполнения документов.

4.5. Угловые и линейные измерения

Горизонтальная съемка местности в простейшем варианте выполняется с помощью теодолита и рулетки. Съемочное обоснование обычно создают проложением теодолитных ходов. Если участок съемки имеет вытянутую форму, то теодолитный ход прокладывают по его оси; при этом отдельные пункты съемочного обоснования можно определять из геодезических засечек. Если участок имеет овальную форму, то прокладывают замкнутый ход по его границе; внутри участка можно проложить диагональные ходы.

При горизонтальной съемке положение отдельных точек определяют относительно пунктов съемочного обоснования и линий, соединяющих их, применяя:

- способ засечек ( угловых, линейных, комбинированных );

- полярный способ;

- способ перпендикуляров;

- способ створов.

Широко также применяется способ обмеров зданий и сооружений и расстояний между ними с помощью рулетки.

Способ засечек. При угловой засечке положение точки 1 определяют относительно двух пунктов съемочного обоснования А и В с помощью двух измеренных горизонтальных углов

1 и
1. Положение другой точки - точки 2 определяют, измеряя два других угла
2 и
2 (рис.8). Результаты измерений записывают в журнал.

Рис.8 Рис.9

При построении плана при точках А и В с помощью транспортира строят углы

1 и
1 и в пересечении линий получают изображение точки 1 на плане. Аналогично находят на плане положение точки 2.

Если расстояние до точки 1 не превышает длины рулетки, положение точки 1 определяют линейной засечкой, при которой измеряют расстояния А - 1 и В - 1 ; при построении плана из точки А проводят дугу радиусом, равным расстоянию А - 1 в масштабе плана, а из точки В - радиусом, равным расстоянию В - 1 в масштабе плана. Точка пересечения этих дуг является изображением точки 1 на плане.

Точность измерения горизонтальных углов при угловой засечке определяется точностью их построения на плане транспортиром,т.е. порядка 10' - 15'. Допустимую ошибку измерения расстояний при линейной засечке рассчитывают по формуле:

ms = 0,3 мм * М,

где М - знаменатель масштаба съемки.

Полярный способ. Полярный способ съемки - это реализация полярной системы координат. Теодолит устанавливают на пункте съемочного обоснования А, принимая его за начало ( полюс ) местной полярной системы координат. Полярная ось совмещается с направлением на другой пункт съемочного обоснования В. Затем измеряют горизонтальный угол

1, образованный направлением АВ и направлением на снимаемую точку 1, и расстояние S1 от точки А до точки 1 (рис.9). При построении плана положение точки 1 получают, откладывая на стороне угла
1, построенного транспортиром, расстояние S1 в масштабе плана.

Рассчитаем среднюю квадратическую ошибку измерения углов и расстояний при полярном способе съемки, если ошибка положения точки 1 задана и равна Мp.

В полярной системе координат ошибка положение точки выражается формулой:

(30)

где

- ошибка измерения угла
; ms - ошибка измерения полярного расстояния.

По принципу равных влияний имеем:

m2s = ( S *

/
)2 = M2
/2, (31)

откуда

и
(32)

Пусть масштаб съемки 1:М=1:2 000, тогда Мp=0.5 мм * 2 000=1 м. При S=100 м вычисления по формулам (37) дают

=24', ms =0.7м, ms/S = 1/150.

Способ перпендикуляров. Способ перпендикуляров является реализацией обычной прямоугольной системы координат. Пусть линия АВ - одна из сторон теодолитного хода. Примем ее за ось l, начало координат совместим с пунктом А; ось d расположим перпендикулярно линии АВ. Положение точки 1 определяется двумя перпендикулярами l1 и d1 (рис.10), длины которых измеряют мерной лентой или рулеткой.

Рис.10

Для построения прямого угла

можно применть теодолит или эккер; иногда угол
= 90o можно построить на глаз. Положение точки 1 на плане получают после выполнения трех операций: откладывания вдоль линии АВ длины перпендикуляра l1, построения угла
=90o c помощью транспортира, откладывания на стороне угла
длины второго перпендикуляра d1.

Съемка других точек и определение их положения на плане выполняются в таком же порядке.

Ошибка положения точки Мp в способе перпендикуляров складывается из ошибки измерения перпендикуляра l, ошибки построения (или измерения) угла

= 90 o и ошибки измерения перпендикуляра d:

М2p = m2l +

2/
2 * d2 + m2d. (33)

По принципу равных влияний полагаем:

m2l =

2/
2 * d2 = m2d = M2p/3. (34)

При Мp = 0.5 мм на плане получим

в масштабе плана. Приняв ошибку построения угла
= 30', рассчитаем допустимую длину перпендикуляра d:

в масштабе плана при относительной ошибке его измерения:

md / d = 0.33 мм / 33 м = 1/110.

Для плана масштаба 1 : 2 000 расчетная длина перпендикуляра d получается 66 м, а для масштаба 1 : 500 - d = 16 м. В Инструкции эти величины заданы 60 м и 20 м соответственно.

Разумеется, при другом значении ошибки

допустимая длина перпендикуляра d будет другой. Например, строя угол
= 90o "на глаз" (
= 1o) , получим d = 16 мм в масштабе плана.

При горизонтальной съемке результаты измерений углов и линий записывают в журнал. Кроме того, прямо в поле составляют схематический чертеж местности - абрис, на котором показывают все пункты съемочного обоснования, контуры, ситуацию местности, записывают результаты измерений, делают пояснительные записи.

По материалам съемки составляют и вычерчивают план участка.


5. GPS для создания плановой основы

ХХI в., вслед за высокой степенью автоматизации и компьютеризации геодезических приборов, появлением технологии спутникового определения местоположения в ушедшем XX в., ознаменовался развитием мощных дальномерных безотражательных лазеров и лазерных сканирующих устройств.

Наземные съемки с помощью приемников GPS и оптических приборов дают достоверную, непосредственную и самую точную информацию о положении и состоянии объектов для ГИС.

Спутниковые системы определения координат получили широкое распространение в мире. Они развивались по принципу «от простого к сложному». В 70–80 годы прошлого века, когда космические навигационные системы (КНС) ГЛОНАСС (СССР) и GPS (США) только начали эксплуатироваться, определение местоположения с предельными ошибками в десятки метров явилось переворотом в области автономного определения координат. Спутниковые методы действительно проложили дорогу принципиально иным технологиям. В масштабах планеты они характеризуются полным охватом пространства (суши, океанов, воздушного и космического пространства), всепогодностью, высокой надежностью получения результатов и универсальностью. На последнем необходимо остановиться подробнее. Если рассмотреть традиционные методы определения координат (астрономические, геодезические, инерциальные), можно заключить, что любой из них ограничен во времени и пространстве, использует совокупность механических, оптических и электронных устройств. При этом каждый пользователь выбирает свой способ решения задачи с использованием той информации, которой он располагает. Для реализации подобных технологий требуются специалисты высокого класса и широкого профиля.