Смекни!
smekni.com

Работа По теме: «Целочисленное программирование» (стр. 2 из 6)

Рассматриваемый алгоритм целочисленного программирования сводит­ся к методу последовательного уточнения оценок с дополнительными пра­вилами расширения и сокращения текущей таблицы решения задачи.

Пример 2. Получить целочисленный оптимальный план задачи

Z(X) = x1— 4х2 — 2х3 + Зх4 —> max при условиях

3x1+x2+8x3+x4=35

x1 +x3+x4≤6

xj≥ 0, хj — целые числа, j = 1, 2, 3, 4.

Решение. Пошаговое решение задачи приведено в табл. 7.2.

Таблица 7.2

На шаге 2 решения задачи без ограничения целочисленности полу­чаем оптимальный нецелочисленный план

X = (0, 0, 29/7, 13/7).

Поскольку обе базисные координаты X нецелочисленны, выбира­ем любую — первую или вторую — строку таблицы на шаге 2, а именно вторую, и строим добавочное ограничение

-5/7x1-6/7x2-1/7x5+x6=-6/7.

Вводя ограничение добавочной строкой на шаге 2, находим направ­ляющий элемент в этой строке:

Осуществляя преобразование табл. 7.2 с направляющим элементом (-5/7), получаем на шаге 3 оптимальный план новой задачи, снова не­целочисленный. На шаге 3 добавляем очередное условие, получаем четыре строки ограничений. Поскольку на шаге 3 достигается

в столбце А6, то х6 становится базисной переменной на шаге 4. В соот­ветствии с правилом сокращения таблицы на шаге 4 вычеркиваем стро­ку и столбец, соответствующие х6, добавляем новую строку, а на ша­ге 5 получаем псевдоплан X = (4, 0, 3, -1). Методом последователь­ного уточнения оценок на шаге 6 получаем план, но нецелочислен­ный. Оптимальный целочисленный план получаем лишь на шаге 7: X* = (О, 1, 4, 2), max Z(X) = -6.

Метод ветвей и границ

Одним из широко распространенных методов решения целочислен­ных задач является метод ветвей и границ, который может быть ис­пользован как для задач линейного программирования, так и для задач, не сводимых к задачам линейного программирования. Рассмотрим идею метода ветвей и границ на примере общей задачи дискретного про­граммирования

f(X) -> max, (7.9)

Х€D (7.10)

где D — конечное множество.

Сначала найдем оценку £(D) (границу) функции f(X), X е D: f(X) ≤ £(D) для V X е D. Если для некоторого плана Х° задачи (7.9)-(7.10) справедливо равенствоf(X0) = £(D), то Х° = X* является решением задачи. Если указанное условие не выполняется, то возмож­но разбиение (ветвление) множества D на конечное число непересека­ющихся подмножеств D1i: ỤD1i. = D, ∩D1i = Ө, и вычисление оценки £(D1i) (границ), 1≤i≤m (рис 7.1)

Рис. 7.1

Если для некоторого плана X1i е Di1, 1 ≤ / ≤ m выполняется условие f(Xkl)= £(D1k)≥ £(D1i), 1≤i≤m то Xk1=X* является оптимальным планом (решением) задачи (7.9)-(7.10).

Если такого плана нет, то выбирается подмножество Dkl с наиболь­шей оценкой £(D1i):

и разбивается на конечное число непересекающихся подмножеств

D2kj: UD2kj=D1k, ∩D2kj=Ө. Для каждого подмножества находится оценка £(D2kj), 1≤j≤n (рис 7.2)

(рис. 7.2).

Если при этом найдется план X2j е D2kJ, 1 ≤j ≤n, такой, что f(X2r)= £(D2kr)≥ £(D2kj), 1≤j≤n, то X2r= X* является решением задачи (7.9)-(7.10). Если такого плана нет, то процедуру ветвления осуществля­ют для множества D2kj с наибольшей оценкой £(D2kj) , 1≤j≤n . Способ ветвления определяется спецификой конкретной задачи.

Рассмотрим задачу, которую можно свести к задаче целочисленного линейного программирования.

Пример.

Контейнер объемом 5 м3 помещен на контейнеровоз грузо­подъемностью 12 т. Контейнер требуется заполнить грузом двух наиме­нований. Масса единицы груза mj (в тоннах), объем единицы груза Vj (в м3), стоимости Cj (в условных денежных единицах) приведены в табл. 7.3.

Таблица 7.3

Вид груза у mj V, Сj
1 3 1 10
2 1 2 12

Требуется загрузить контейнер таким образом, чтобы стоимость пе­ревозимого груза была максимальной.

Решение. Математическая модель задачи имеет вид

Z(X) = 10x1+12x2→max, (7.11)

3x1+x2≤12,

x1+2x2≤5

x1≥0 (7.12)

x2≥0

x1, x2- целые числа (7.13)

где x1, x2 - число единиц соответственно первого и второго груза.

Множество планов этой задачи обозначим через D - это множество целых точек многогранника ОАВС (рис. 7.3).

Рис. 7.3

Сначала решаем задачу (7.11)—(7.13) без условия целочисленности, получим оценку множества D - значение функции Z(X) на оптималь­ном плане Х° = (19/5, 3/5):

ТочкаXнеявляется оптимальным планом задачи (7.1 1)— (7.13). По­этому в соответствии с методом ветвей и границ требуется разбить множество D на непересекающиеся подмножества. Выберем первую нецелочисленную переменную x1=19/5=34/5 и разобьем множество D на два непересекающихся подмножества D11 и D22. Линии x1=3 (L3) и x4= (L3) являются линиями разбиения.


L\

Рис. 7.4

Найдем оценки £(D11) и £(D12), для чего решим задачи линейного программирования

Z(X)=10x1+12x2→max,

3x1+x2≤12

x1+2x2≤5

x1≤3

x1≥0, x2 – целые числа

Z(X)=10x1+12x2→max,

3x1+ x2≤12

x1+2x2≤5

x1≥4

x1≥0, x2 – целые числа

Например, графическим методом:

X11eD11→X01= (3,1); £(D11)=42; X12eD12→X02= (4,0); £(D12)=40.

Результат ветвления приведен на рис. 7.5


Рис. 7.5

План X01 удовлетворяет условиям задачи (7.11)-(7.13), и для него выполняется условие: Z(X11)= £(D11)=42 >

£(/)/) = 42 >£(D12) = 40. Следовательно, план X°1= (3, 1) является решением задачи (7.11)-(7.13),

т.е. надо взять три единицы первого груза и одну единицу второго груза.

Алгоритм метода ветвей и границ

  1. Находим решение задачи линейного программирования без учета целочисленности.
  2. Составляет дополнительные ограничения на дробную компоненту плана.
  3. Находим решение двух задач с ограничениями на компоненту.
  4. Строим в случае необходимости дополнительные ограничения, согласно возможным четырем случаям получаем оптимальный целочисленный план либо устанавливаем неразрешимость задачи.

ЦИКЛИЧЕСКИЙ АЛГОРИТМ ЦЕЛОЧИСЛЕННОГО ПРОГРАММИРОВАНИЯ

Рассмотрим следующую задачу линейного программирования:

Максимизировать

X0=a00-a01x1-a02x2-……..-a0nxn,

при условии

xn+1=an+1,0-an+1,1x1-an+1,2x2-…….-an+1,nxn,

.

.

xn+m=an+m,0- an+m,1x1-an+m,2x2-…….-an+m,nxn,

xj≥0 (j=1,…….,n+1,…….,n+m).

Заметим, что xn+1, . ., хn+m слабые переменные, a x1 ... ., хn исходные переменные задачи (1). Если наряду с огра­ничениями (1) потребовать, чтобы все хj , (j'=1, . . ., т) были целыми, то задача будет называться задачей целочисленного про­граммирования. Существует большое количество задач, особенно комбинаторных, которые можно сформулировать как задачи цело­численного программирования.

Ограничения (1) определяют выпуклую область OABCD в n-мер­ном пространстве, как показано на рис. 13.1. Узлы целочисленной решетки на рис. 13.1 изображены точками. Такие точки, рас­положенные внутри области OABCD, являются допустимыми решениями задачи целочисленного программирования. Оптималь­ные решения задачи линейного программирования всегда распола­гаются на границе области решений. В данном случае граничные точки не являются даже допустимыми решениями, поскольку ни одна из них не целочисленна. Предположим, что область допу­стимых решений сужена до выпуклой оболочки допустимых целых точек внутри допустимой области. На рис. 13.1 эта выпук­лая оболочка показана затененной областью OEFGH. Эту зате­ненную область можно рассматривать как область допустимых решений некоторой другой задачи линейного программирования. Действительно, если к задаче линейного программирования, опре­деляющей допустимую область OABCD, добавить ограничение типа RR', как показано на рис. 13.1, то вновь полученная задача будет иметь OEFGH в качестве области допустимых решений. Такая вновь полученная область обладает двумя важными свой­ствами: во-первых, она содержит все допустимые целочисленные точки исходной задачи линейного программирования (поскольку она является выпуклой оболочкой этих точек), во-вторых, все крайние точки новой области — целочисленны. Поэтому любое базисное оптимальное решение модифицированной задачи линей­ного программирования имеет своими компонентами целые числа и является оптимальным ре­шением исходной задачи цело­численного программирования.