Смекни!
smekni.com

Работа По теме: «Целочисленное программирование» (стр. 6 из 6)

Задача о назначении

Имеет n исполнителей, которые могут выполнять n различных работ. Известна полезность

, связанная с выполнением i-м исполнителем j-й работы
. Необходимо назначить исполнителей на работы так, чтобы добиться максимальной полезности, при условии, что каждый исполнитель может быть назначен только на одну работу и за каждой работой должне быть закреплен только один исполнитель.

Математическая модель задачи примет вид:

Каждый исполнитель назначается только на одну работу:

На каждую работу назначается только один исполнитель:

Условия неотрицательности и целочисленности

,
.

Задача коммивояжера

Коммивояжер должен посетить один, и только один, раз каждый из n городов и вернуться в исходный пункт. Его маршрут должен минимизировать суммарную длину пройденного пути.

Математическая модель задачи:

Условия неотрицательности и целочисленности

,
.

Добавляется условие прохождение маршрута через все города, т.е. так называемое условие цикличности. Иначе, маршрут должен представлять собой замкнутую ломаную, без пересечений в городах-точках.

Заключение.

В данной работе была рассмотрена сущность целочисленного программирования. Затронуты специальные методы решения целочисленных задач. Такие задачи возникают при моделировании разнообразных производственно-экономических, технических, военных и других ситуаций. В то же время ряд проблем самой математики может быть сформулирован как целочисленные экстремальные задачи.

Задачи такого типа весьма актуальны, так как к их решению сводится анализ разнообразных ситуаций , возникающих в экономике, технике, военном деле и других областях. Эти задачи интересны и с математической точки зрения. С появлением ЭВМ, ростом их производительности повысился интерес к задачам такого типа и к математике в целом.

Список использованной литературы:

1. А.Схрейвер. Теория линейного и целочисленного программирования: в 2-х томах.; перевод с английского. 1991г. 360с.

2. Т.Ху. Целочисленное программирование и потоки в сетях.; перевод с английского. 1974г.

3. А.В.Кузнецов, В.А.Сакович, Н.И.Холод. Высшая математика: Математическое программирование. Ученик - 2-е издание. 2001г. 351с.

4. В.Г.Карманов. Математическое программирование: Учебное пособие – 5-е издание, стереотип-М:ФИЗМАТ, 2001г.-264с.

5. Е.Г.Белоусов. Введение в выпуклый анализ и целочисленное программирование. М.:Издательство МГУ, 1977г.

6. В.В. Федосеев, А.Н.Гармаш, Д.М.Дайитбегов.: Экономико-математические методы и прикладные модели: Учеб.пособие для вузов/ЮНИТИ, 1999г.-391с.

7. Н.Ш. Кремер, Б.А.Путко, И.М.Тришин, М.Н.Фридман; под ред. Проф.Н.Ш.Кремера. : Исследование операций в экономике; учеб. Пособие для вузов.


[1] Символ (≡) означает «сравнимость».

[2] Если λ > 1, то для получения отсечения (10) из (4) требуется только неотрицательность левой части уравнения (4). Следовательно, любая поло­жительная линейная комбинация строк таблицы может служить произво­дящей строкой.