Смекни!
smekni.com

Методическое объединение преподавателей математики, физики и информатики Система подготовки одаренных учащихся 5 класса к олимпиадам по математике Председатель мо (стр. 3 из 6)

§2. Основные особенности системы подготовки учащихся, одаренных по предмету, к олимпиадам по математике различных уровней.

Развитие учащихся во многом зависит от той деятельности, которую они выполняют в процессе обучения. Если деятельность репродуктивная – ученик получает готовую информацию, воспринимает ее, понимает, запоминает, а затем воспроизводит. Цель такой деятельности – формирование знаний, умений и навыков.

Если деятельность продуктивная – происходит активная работа мышления, связанная с логическими операциями анализа, синтеза, сравнения, аналогии, обобщения. Задумываясь над основанием собственных умений (рефлексируя), ребенок овладевает обобщенными способами действий, лежащими в основе этого умения, и тем самым приобретает знания, которые может конкретизировать при решении целого класса частных задач. В общем случае появлению конкретных знаний предшествует овладение методом получения этих знаний.

Опираясь на психологические особенности пятиклассников - а среди лицеистов 5 класса есть и 8,9- летние дети, - выделим те (Д.Пойа), на которые мы опирались при создании системы подготовки к олимпиадам. Это следующие особенности:

1) до 6-7 лет ребенок, оперируя предметами, овладевает окружающим миром через конкретные действия; в этом возрасте большинство детей не может выполнять обратные операции и не владеет принципами сохранения количества и величины предмета;

2) в период обучения в начальной школе (до 10-11 лет) от действий с предметами ребенок постепенно переходит к выполнению операций с образами (символами) этих предметов; ребенок в этом возрасте в состоянии выполнять операции не непосредственно с помощью проб и ошибок, а сначала мысленно; может совершать действия в обратной последовательности; дети этого возраста способны упорядочивать имеющиеся предметы, овладевают принципом сохранения, однако все операции конкретны и ограничены его жизненным опытом;

3) примерно к 12 годам ребенок переходит в последнюю стадию умственного развития (стадию «формальных операций»), когда становиться возможным выполнение мыслительных операций, уже не опирающихся на личный конкретный опыт; ребенок овладевает абстрактно-понятийными способами мышления и к 14-15 годам у него формируется логика взрослого человека.

4) Помимо данных особенностей развития, одаренных учащихся часто характеризуют: свернутость и вариативность мышления, долговременная память, рассеянное внимание, психические отклонения, неадекватная самооценка и эгоизм.

Проанализировав данные психолого-физиологические положения и имеющиеся в распоряжении педагогов пособия по работе с одаренными детьми по математике и подготовке их к олимпиадам, мы сделали вывод, что обычно их содержание организовано следующим образом: это сборники заданий для учащихся повышенной сложности и на смекалку с прилагаемыми ответами или, в лучшем случае, коротким решением.

При этом основным методом обучения детей остается репродуктивный: запоминание способа решения заданной конкретной задачи и тренинг (повторение способа решения при многократном выполнении однотипных заданий). При таком методе следующим этапом работы учителя является предложение детям карточек с набором заданий разных типов с целью идентификации ребенком по внешним признакам известных типов заданий и извлечения из памяти заученных способов их решения.

Но “развитая память еще не есть образованность, точная информация еще не есть знания” (У. Глассер). За счет усвоения готовых способов решения разнообразных частных задач невозможно получить развитие способности к самостоятельному нахождению способов решения. Поэтому учащийся, столкнувшись с задачей нового типа или более повышенной сложности, часто терпит неудачу при ее решении…однако одаренный ребенок не отказывается от решения сразу, как обычный школьник, а пытается решить ее. В случае неуспеха возникают критические ситуации, выход из которых возможен в одной из следующих стратегий: преодоление (конструктивная стратегия), либо приспособление или отторжение (неконструктивные стратегии поведения).

В предлагаемой нами методике работы с одаренными детьми по математике главной задачей является раскрытие принципов действия, решение задачи не ради точного ответа, а ради способа его получения, ради логических рассуждений (зачастую свернутых) на пути к нему. Для осуществления технологического процесса при данном подходе к обучению необходима строгая логика построения учебного содержания.

§ 3. Методические рекомендации по использованию нестандартных
задач уроках как основа подготовки к олимпиадам .

Для конструирования содержания по подготовке к олимпиадам в 5 классе нами отбирались задания, которые, во-первых, не могли быть использованы на уроках в рамках учебного курса математики:

а) задания, выходящие за рамки изучаемых понятий по годам обучения, но возможность нахождения способов их решения прогнозируется исходя из зоны ближайшего развития одаренных детей;

б) задания, требующие нестандартного подхода к их решению;

во-вторых (и это главное), могли быть систематизированы по общему способу их решения и представлены в виде модели (знаковой, геометрической, диаграммы, алгоритма действий и т.д.)

Речь идет о моделировании как особом общем способе познания и важнейшем учебном действии, являющимся составным элементом учебной деятельности. С одной стороны, моделирование выступает целью обучения, а с другой – средством самостоятельного решения учащимися конкретных математических задач. Учащиеся в процессе особо организованного обучения овладевают действием моделирования, нарабатывая его как способ или даже метод продвижения в системе понятий.

Основные принципы такой организации работы с одаренными детьми:

- В ходе использования моделирования нецелесообразно предлагать детям модель в готовом виде. Модель всегда есть результат некоторого этапа исследования. Существенные признаки и связи, зафиксированные в модели, становятся наглядными для учащихся тогда, когда эти признаки, связи были выделены самими детьми в их собственном действии, т.е. когда они сами участвовали в создании моделей. В противном случае учащиеся не видят их в модели, и она не становится для них наглядной.

- Для того, чтобы учащиеся вышли на новую модель, учитель сначала предлагает им задачу, которую они уже легко решают, используя известный способ и модель. Создав ситуацию успеха, можно предложить детям задачу, которая внешне похожа на предыдущую, но её решение старым способ либо приводит к неудаче, либо нерационально. Ребенок обнаруживает дефицит собственных знаний и понимает, что в такой ситуации, когда у него возникают трудности и известная модель не позволяет ему быстро решить задачу, нужно конструировать новый вид модели. Следовательно, у детей возникает необходимость, что является основой для устойчивой мотивации дальнейшей деятельности.

- Построение модели учащимися обеспечивает наглядность существенных свойств, скрытых связей и отношений, все остальные свойства, несущественные в данном случае, отбрасываются. Часто это не под силу одному ученику, поэтому такую работу целесообразно проводить в группах. Внутри группы дети сами организуют свои действия: либо сначала обсуждают способы решения, а затем каждый самостоятельно пытается выполнить задание, либо сначала каждый пробует выполнить задание, а потом сравнивает свой способ решения со способами других детей. В качестве доказательства правильности решения задачи используется все та же модель. В данном случае она является средством для обоснования точки зрения.

Разобравшись и проанализировав то многообразие текстовых задач, которое есть в школьном курсе математики (включая и нестандартные задачи), можно классифицировать модели, которыми может пользоваться учащийся. Для различных исследований в математике разработаны методы теории графов, теории вероятностей и математической статистики, математической логики и комбинаторики, аксиоматический метод, методы исследования элементарных функций, решения уравнений, доказательства утверждений, построения геометрических фигур, измерения величин и т.д. В начальной и 5 классе школе учащиеся вполне могут моделировать комбинаторные и логические задачи, задачи, решаемые с помощью кругов Эйлера, графов, уравнений, задачи на измерение величин.

Учителю математики, занимающемуся подготовкой учащихся к олимпиадам, так же необходимо обеспечить работу с задачами следующих разделов (разумеется, адаптированными под 5 класс):

1. Ребусы, криптограммы.

2. Текстовые задачи.

3. Теория чисел.

4. Планиметрия.

5. Стереометрия.

6. Уравнения, неравенства и системы.

7. Доказательства числовых неравенств.