8. Задачи на взвешивание.
9. Логические задачи.
10. Комбинаторные задачи.
Из каждого раздела не стоит рассматривать случайную выборку задач, нужно выделить основные темы, методы, способы. Так, например, в разделе «Теория чисел» в 5 классе можно определить следующие основные темы:
1. Восстановление знаков действий.
2. Восстановление цифр натуральных чисел.
3. Числовые ребусы.
4. Четные и нечетные числа.
5. Признаки делимости.
6. Простые и составные числа.
7. Деление с остатком.
8. Перестановка и зачеркивание цифр в натуральном числе.
9. Последние цифры натурального числа.
10. Степень с натуральным показателем.
11. Системы счисления.
12. Уравнения в целых числах.
13. Неравенства в целых числах.
При непосредственной подготовке учащихся к математическим конкурсам и олимпиадам необходимо акцентировать внимание учащихся на следующих моментах:
- в качестве одной из задач конкурса любого уровня может быть задача, в условии которой фигурирует год проведения олимпиады,
- в конкурсных задачах отсутствуют задачи с длительными выкладками,
- в задачах на доказательство требуется полное обоснование,
- если в условии требуется указать все возможные способы решения, то от полноты количества указанных способов зависит и количество полученных баллов,
- если в условии требуется ответить на вопрос «Можно ли…?», то для ответа достаточно привести один положительный пример, а для того, чтобы дать ответ «нельзя». Необходимо рассмотреть все возможные случаи, обобщая их в доказательство.
Как пример описанной выше работы, рассмотрим технологию организации работы с арифметическими ребусами.
При работе с такими типами заданий следует учитывать несколько технологичных приемов:
1. Следует предлагать детям обратные преобразования: сначала обычный пример сделать арифметическим ребусом, заменив цифры буквами; затем ребус превратить в обычный пример, разгадав числа. Тогда дети будут понимать, откуда берутся одинаковые цифры на месте одинаковых букв, лишний старший разряд, разная цифра в суммах одинаковых слагаемых и т.д.
2. Различные “секреты” ребусов не задавать одновременно, это следует делать поочередно, причем после введения каждого “секрета” и его подробного обсуждения предлагать детям самим придумать ребус с таким “секретом”.
3. Следует учитывать возрастные особенности детей: ребусы с буквами требуют умения учащихся абстрагироваться, выполнять в уме большую часть вычислительных операций, что трудно для малышей, легче дается 3-4-хклассникам.
4. Примеры со * решаются проще, чем ребусы с буквами. Они построены по принципу “распутай клубок”. Поэтому начинать работу следует именно с таких примеров.
Все арифметические ребусы можно разделить на 2 группы:
I группа. Задания, где в примерах цифры частично заменены на * (либо другие значки), нужно восстановить вместо * недостающие цифры и выполнить действие. Эти задания выполняются по общему принципу “распутай клубок”.
II группа. Задания, где примеры либо математические выражения состоят только из * либо из букв (обычных и “сказочных”).
Последовательность работы с арифметическими ребусами.
Последовательность работы с арифметическими ребусами, где
нужно заменить * недостающими цифрами и выполнить действие.
Постановка задачи.
Учитель предлагает внимательно рассмотреть примеры, записанные на доске, и найти «секрет» этих примеров.
4 + 2 = 6 6 – 5 = 1 1 + 7 = 8 8 – 3 = 5
Дети без труда выясняют, что результат каждого примера является началом следующего («цепочка» примеров). Тогда учитель предлагает решить головоломку, которая называется «распутай клубок».
56 – Δ = -
- – 15 = -
18 + 6 = Δ
- + 1 = ►
Дети фиксируют свои вопросы: как решить примеры, в которых нет двух чисел? Почему задание называется «распутай клубок», о каком клубке речь? С этими вопросами учитель отправляет их работать в группах. Поиск ответов на вопросы ведется совместно.
Этап моделирования.
В групповой работе учащиеся выясняют, что один пример решить все же можно. Таким образом, будет найдено значение Δ. Подставив его в первый пример, находим следующее число и т.д. Теперь детям понятно, почему назвали задание «распутай клубок». Учитель предлагает сравнить это задание с цепочкой примеров. Дети выясняют, что в обоих заданиях цифра результата подставляется в следующий пример, т.е. принцип одинаков. В любой условной форме моделируют этот принцип: Δ + . = . . - . = Δ
Этап контроля.
Учитель предлагает детям последовательно решить следующие задания:
1. Распутать еще один «запутанный клубок», пользуясь выведенным принципом (здесь для усложнения изменена последовательность примеров).
82 + - = ►
- + 8 = Δ
Δ – 39 = -
94 – 45 = -
2. Превратить цепочку примеров, записанную на доске ранее, в «запутанный клубок» (для этого некоторые цифры заменить геометрическими фигурами).
В качестве «ловушки» учитель предлагает такой вариант выполненного задания (одинаковые цифры заменены не одинаковыми, а разными фигурами):
4 + 2 = 6 6 – 5 = 1 1 + 7 = 8 8 – 3 = 5
4 + 2 = Δ Δ – 5 = - ■ + 7 = - - – 3 = ►
≠Дети находят «ловушку» и фиксируют основное правило: одинаковые цифры должны быть заменены одинаковыми значками (и наоборот). Например, так:
7 = 7Δ = Δ
3. Придумать самостоятельно «запутанный клубок». Для этого дети сначала должны составить цепочку примеров.
4. Вставить вместо Δ одну и ту же цифру, чтобы равенство было верным.
1Δ + 3Δ + 5Δ = 111
Дети выполняют это задание путем перебора вариантов:
1 + 1 + 1 = 3 не подходит; 2 + 2 + 2 = 6 не подходит
3 + 3 + 3 = 9 не подходит; 4 + 4 + 4 = 12 не подходит
5 + 5 + 5 = 15 не подходит; 6 + 6 + 6 = 18 не подходит
7 + 7 + 7 = 21 подходит - 21 + (10 + 30 + 50) = 111
Выполняя это задание, учащиеся, кроме того, моделируют алгоритм выполнения такого задания и форму записи: последовательный перебор возможных вариантов с фиксацией, подходит или нет такой вариант.
Этап преобразования модели.
Учитель предлагает детям следующее задание: Восстановить пример:
7 3 Δ 739 можно дать более сложный
+2 - 6 +236 вариант - - Δ
Δ 7 5 975 + 2 - 6
Δ - 5
Дети могут выполнять задание в парах, группах либо индивидуально. После выполнения задания обсудить, с чего начинали, где была та ниточка, за которую потянули, чтобы распутать весь клубок. Выяснить, что, чтобы сложить многозначные числа, нужно сосчитать несколько примеров с однозначными числами, своеобразную цепочку. А такие задания мы выполнять умеем. Главное – найти подсказку, где «начинается клубок».
Итак, «секреты», которые помогают решать арифметические ребусы:
№1. Одинаковые знаки (буквы) обозначают одинаковые цифры.
7 = 7Δ = Δ
№2. Чтобы решить такой пример, нужно найти начало «клубочка» (откуда будет раскручиваться логическое рассуждение).
? ´ !
№3. Нужно учитывать «переполнение» из соседнего разряда.
17 3 Δ
+ 2 - 6
Δ 7 5
Этап контроля.
1. Детям предлагается ряд примеров на сложение и вычитание со *. В третьем и четвертом классе это могут быть примеры на умножение и деление.
3 7 0 * * * 5 9 * _* 2 * 4 8 .+ * 9 * 8 ´ 8 0 0 3 * * * *
9 * 4 0 5 0 8 * 2 * * * _ 2 *
* *
0
2. Запиши суммы обычными цифрами:
Ỵ Ỵ 0 Ỵ Ỵ Ŧ Ŧ Ŧ Ŧ Ұ Ұ 0 Ұ Ұ
+ Ỵ 0 Ỵ Ỵ Ỵ + Ŧ Ŧ Ŧ Ŧ + Ұ Ұ Ұ Ұ Ұ
. . . 6 6 . . . 9 8 . . . . 5 4
Решая такие задания, дети выясняют еще два «секрета» арифметических ребусов, связанные с «переполнениями» из соседнего разряда:
- откуда берется еще один разряд в сумме, и какая цифра там может быть? (только 1).
- почему при сложении одинаковых знаков (букв) написаны (а значит, получаются) разные цифры? (виновато «переполнение» из соседнего разряда).
Открытия дополняют составленный ранее перечень «секретов»:
№4. На месте «свободного» старшего разряда в сумме может быть только цифра 1, которая получается из переполнения соседнего разряда.
1. . . .
+ . . . .
1 . . . .
№5. При сложении двух одинаковых букв могут получиться разные результаты. Виновато в этом «переполнение» из соседнего разряда.
нет переполнения 1 есть переполнение Ŧ Ŧ Ŧ Ŧ+ Ŧ Ŧ + Ŧ Ŧ
8 8 . 9 8
цифры одинаковые цифры разные
Значит, Ŧ может быть равно 4, а может быть равно 9. Об этом обязательно следует помнить.