Смекни!
smekni.com

Классификация коррозионных процессов (стр. 2 из 8)

Анодный и катодный процессы с той или иной вероятностью и в той или иной последовательности протекают в любых точках металлической поверхности, где катионы и электроны могут взаимодействовать с компонентами коррозионной среды. Если поверхность однородна, то катодные и анодные процессы равновероятны по всей её площади; в таком идеальном случае коррозию называют гомогенно-электрохимической (отмечая таким образом отсутствие какой-либо неоднородности в распределении вероятности электрохимических процессов в любой точке поверхности, что, конечно, не исключает термодинамической гетерогенности взаимодействующих фаз). В действительности на металлических поверхностях существуют участки с различными условиями доставки реагирующих компонентов, с разным энергетическим состоянием атомов или с различными примесями. На таких участках возможно более энергичное протекание либо анодного, либо катодного процессов, и коррозия становится гетерогенно-электрохимической.

3.3. По типу коррозионной среды

Некоторые коррозионные среды и вызываемые ими разрушения столь характерны, что по названию этих сред классифицируются и протекающие в них коррозионные процессы.

Как правило, металлические изделия и конструкции подвергаются действию многих видов коррозии - в этих случаях говорят о действии так называемой смешанной коррозии.

Газовая коррозия – коррозия в газовой среде при высоких температурах.

Атмосферная коррозия – коррозия металла в условиях атмосферы при влажности, достаточной для образования на поверхности металла пленки электролита (особенно в присутствии агрессивных газов или аэрозолей кислот, солей и т.д.). Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.

Жидкостная коррозия – коррозия в жидких средах. По условиям воздействия жидкой среды на металл этот тип коррозии также характеризуется как коррозия при полном погружении, при неполном погружении, при переменном погружении, имеющие свои характерные особенности.

Подземная коррозия – коррозия металла в грунтах и почвах. Характерной особенностью подземной коррозии является большое различие в скорости доставки кислорода (основной деполяризатор) к поверхности подземных конструкций в разных почвах (в десятки тысяч раз).

3.4.По характеру дополнительных воздействий

Коррозия под напряжением развивается в зоне действия растягивающих или изгибающих механических нагрузок, а также остаточных деформаций или термических напряжений и, как правило, ведёт к транскристаллитному коррозионному растрескиванию, которому подвержены, например, стальные тросы и пружины в атмосферных условиях, углеродистые и нержавеющие стали в паросиловых установках, высокопрочные титановые сплавы в морской воде и т. д. При знакопеременных нагрузках может проявляться коррозионная усталость, выражающаяся в более или менее резком понижении предела усталости металла в присутствии коррозионной среды. Коррозионная эрозия (или коррозия при трении) представляет собой ускоренный износ металла при одновременном воздействии взаимно усиливающих друг друга коррозионных и абразивных факторов (трение скольжения, поток абразивных частиц и т. п.). Родственная ей кавитационная коррозия возникает при кавитационных режимах обтекания металла агрессивной средой, когда непрерывное возникновение и «захлопывание» мелких вакуумных пузырьков создаёт поток разрушающих микрогидравлических ударов, воздействующих на поверхность металла. Близкой разновидностью можно считать и фреттинг-коррозию, наблюдаемую в местах контакта плотно сжатых или катящихся одна по другой деталей, если в результате вибраций между их поверхностями возникают микроскопические смещения сдвига.

Утечка электрического тока через границу металла с агрессивной средой вызывает в зависимости от характера и направления утечки дополнительные анодные и катодные реакции, могущие прямо или косвенно вести к ускоренному местному или общему разрушению металла ( коррозия блуждающим током). Сходные разрушения, локализуемые вблизи контакта, может вызвать соприкосновение в электролите двух разнородных металлов, образующих замкнутый гальванический элемент, — контактная коррозия. В узких зазорах между деталями, а также под отставшим покрытием или наростом, куда проникает электролит, но затруднён доступ кислорода, необходимого для пассивации металла, может развиваться щелевая коррозия, при которой растворение металла в основном происходит в щели, а катодные реакции частично или полностью протекают рядом с ней на открытой поверхности.

Принято выделять также биологическую коррозию, идущую под влиянием продуктов жизнедеятельности бактерий и др. организмов, и радиационную коррозию — при воздействии радиоактивного излучения.

4. Показатель скорости коррозии

Для установления скорости коррозии металла в данной среде обычно ведут наблюдения за изменением во времени какой-либо характеристики, объективно отражающей изменение свойства металла. Чаще всего в коррозионной практике используют следующие показатели.

1. Показатель изменения массы - изменение массы образца в результате коррозии отнесенный к единице поверхности металла S и к единице времени (например, г/м ч)

в зависимости от условий коррозии различают:

а) отрицательный показатель изменения массы

К-m=

где m - убыль массы металла за время коррозии после удаления продуктов коррозии.

б) положительный показатель изменения массы

К+m=

где m - увеличение массы металла за время вследствие роста пленки продуктов коррозии.

Если состав продуктов коррозии известен, то можно сделать пересчет от К к К и наоборот

К-m= К+m (nok A Me / n Me Aok)

где А и М - атомная и молекулярная масса Ме и окислителя соответственно; n и n валентность металла и окислителя в окислительной среде.

2.Объемный показатель коррозии

К - объем поглащенного или выделившегося в процессе газа V отнесенный к единице поверхности металла и единице времени (например, см/см ч).

К= объ. V / s

объем газа обычно приводят к нормальным условиям.

Применительно к электрохимической коррозии когда процесс катодной деполяризации осуществляется за счет разряда ионов водорода, например, по схеме 2Н + 2е = Н, или ионизация молекул кислорода О + 4е +2НО = 4ОН; вводятся соответственно кислородный (К ) и водородный (К ) показатель соответственно.

Водородный показатель коррозии - это объем выделившегося Н в процессе коррозии. отнесенный к Su .

Кислородный показатель коррозии - это объем поглощенного в процессе О , отнесенный к Su .

3.Показатель сопротивления

Изменение электрического сопротивления образца металла за определенное время испытаний также может быть использован в качестве показания коррозии (К ).

КR = (R/Ro) 100% за время t

где R0 и R электрическое сопротивление образца соответственно до и после коррозии.

У этого способа есть некоторый недостаток толщина металла во все время испытаний должна быть одинаковой и по этой причине чаще всего определяют удельное сопротивление, т.е. изменение электрического сопротивления на единицу площади образца (см,мм) при длине равной единице. Этот метод имеет ограничения применения (для листового металла не более 3мм). Наиболее точные данные получают для проволочных образцов. Этот метод не пригоден для сварных соединений.

4.Механический показатель коррозии

Изменение какого-либо свойства металла за время коррозии . Сравнительно часто пользуются изменением предела прочности. Прочностной показатель при этом выражается:

Кo= ( в/во) 100% за время t

где в изменение предела прочности при растяжении после коррозии образца в течении времени ; во предел прочности до коррозии.

5.Глубинный показатель коррозии

К - глубина разрушения металла П в единицу времени (например, мм/год)

Глубина коррозионного разрушения П может быть средней или максимальной. Глубинный показатель коррозии можно использовать для характеристики как равномерной., так и неравномерной коррозии (в том числе и местной) металлов. Он удобен для сравнения скорости коррозии металла с различными плотностями. Переход от массового, токового и объемного к глубинному возможен при равномерной коррозии.

10-бальная шкала для оценки общей коррозионной стойкости металлов

Группа стойкости Скорость коррозии металла, мм/год Балл
Совершенно стойкие менее 0,001 1
Весьма стойкие 0,001 – 0,005 2
0,005 – 0,01 3
Стойкие 0,01 – 0,05 4
0,05 – 0,1 5
Пониженно-стойкие 0,1 – 0,5 6
0,5 – 1,0 7
Малостойкие 1,0 – 5,0 8
5,0 – 10.0 9
Нестойкие более 10,0 10

Методы защиты от коррозии

Современная защита металлов от коррозии базируется на следующих методах:

повышение химического сопротивления конструкционных материалов,

изоляция поверхности металла от агрессивной среды,

понижение агрессивности производственной среды,

снижение коррозии наложением внешнего тока (электрохимическая защита).

Эти методы можно разделить на две группы. Первые два метода обычно реализуются до начала производственной эксплуатации металлоизделия (выбор конструкционных материалов и их сочетаний еще на стадии проектирования и изготовления изделия, нанесение на него защитных покрытий). Последние два метода, напротив, могут быть осуществлены только в ходе эксплуатации металлоизделия (пропускание тока для достижения защитного потенциала, введение в технологическую среду специальных добавок-ингибиторов) и не связаны с какой-либо предварительной обработкой до начала использования.