10. Валиев, Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией / Р.З. Валиев, И.В. Александров. – М.: Логос. – 2000. – 271 с.
11. Андриевский, Р.А. Наноматериалы: Концепция и современные проблемы / Р.А. Андриевский // РХЖ. – 2002. – Т.46, №5. – С. 50-56.
12. Сергеев, Г.Б. Нанохимия / Г.Б. Сергеев. – М.: Изд-во МГУ, 2003. – 287 с.
13. DIAMOND 1992 Third International Conference on the New Diamond Science and Technology jointly with 3rd European Conference on Diamond, Diamond like compounds and related coatings (Heidelberg August 31 – September 4, 1992) Elsevier Sequoia S.A., 1993. – 1133 р.
14. V Всесоюзное совещание по детонации (Красноярск, 5-12 августа 1991): сборник докладов в 2-х т. - Красноярск. – 379 с.
15. Елецкий, А.В. Фуллерены / А.В. Елецкий, Б.М. Смирнов // Успехи физических наук. – 1993. – Т.163, №2. – С. 33-60.
16. Лейпунский, О.И. Об искусственных алмазах / О.И. Лейпунский // Успехи химии. – 1939. – Т.8, №10. – С. 1520-1534.
17. Bundy, F.P. Artificial diamonds / F.P. Bundy, H.T. Hall,
H.M. Strong, R.H.Jr. Wentorf // Nature. – 1955. – V.176. – Р. 51.
18. De Carly, P.S. Formation of diamond by explosive shock / P.S. De Carly, T.S. Jamieson // Science. – 1961. – V.133, №3466. – P. 1821-1823.
19. Patent US. Process for synthething diamond / Covan J.R., Dunnington B.W., Holzman A.H. - №3401019; from 10.09.68.
20. А.с. СССР. Способ получения алмаза / Г.А. Ададуров, Т.Б. Бавина, О.Н. Бреусов, В.Н. Дробышев [и др.]. - №565474; опубл. 23.07.76.
21. Волков, К.В. Синтез алмаза из углерода продуктов детонации ВВ / К.В. Волков, В.В. Даниленко, В.И. Елин // Физика горения и взрыва. – 1990. – Т.26, №3. – С. 123-125.
22. Трефилов, В.И. Особенности структуры ультрадисперсных алмазов, полученных высокотемпературным синтезом в условиях взрыва / В.И. Трефилов, Г.И. Саввакин, В.В. Скороход // ДАН СССР. – 1978. – Т.239, №4. – С. 838-841.
23. А. с. СССР. Способ получения алмаза / А.М. Ставер,
А.И. Лямкин, Н.В. Губарева, Е.А. Петров. - №1165007; от 1.07.82.
24. Ставер, А.М. Ультрадисперсные алмазные порошки, полученные с использованием энергии взрыва / А.М. Ставер, Н.В. Губарева, А.И. Лямкин, Е.А. Петров // Физика горения и взрыва. – 1984. – Т.20, №5. – С. 100-103.
25. Gneiner, N.R. Diamonds in detonation soot / N.R. Gneiner, D.S. Phillips, F.J.D. Johnson // Nature. – 1988. – V.333. – P. 440-442.
26. Лямкин, А.И. Получение алмазов из взрывчатых веществ / А.И. Лямкин, Е.А. Петров, А.П. Ершов, Г.В. Сакович, А.М. Ставер, В.М. Титов // ДАН СССР. – 1988. – Т.302, №3. – С. 611-613.
27. Сакович, Г.В. Получение алмазных кластеров взрывом и их практическое применение / Г.В. Сакович, П.М. Брыляков, А.Л. Верещагин, В.Ф. Комаров, В.Д. Губаревич // Журнал Всесоюзного химического общества, 1990. – T.35, №5. – С. 600-602.
28. Титов, В.М. Исследование процесса синтеза ультрадисперсного алмаза в детонационных волнах / В.М. Титов, В.Ф. Анисичкин, И.Ю. Мальков // Физика горения и взрыва. – 1989. – Т.25, №3. –
С. 117-126.
29. Ставер, А.М. Получение ультрадисперсных алмазов из взрывчатых веществ / А.М. Ставер, А.И. Лямкин // Ультрадисперсные материалы. Получение и свойства. – Красноярск, 1990. – С. 3-22.
30. Sakovich, G.V. New type of artificial diamonds and physical-chemical fundumentals of their creation / G.V. Sakovich, E.A. Petrov, V.F. Komarov, N.V. Kozyrev // Conversion Concepts for Commercial Applications and Disposal Technologies of Energetic Systems. P. 55-72. NATO ASI Series (ed. H.Krause). 1997 Kluver Academic Publishers.
31. А.с. СССР. Способ получения кубического нитрида бора / А.Л. Верещагин, А.М. Мазуренко. - №658085; опубл. 28.12.78.
32. А. с. СССР. Способ очистки алмаза от графита / А.И. Шебалин, В.А. Молокеев, Г.В. Сакович, Г.С. Тараненко [и др.]. - №1770271; от 13.06.84.
33. А. с. СССР. Способ очистки ультрадисперсных алмазов / Т.М. Губаревич, Н.М. Костюкова, Р.Р. Сатаев, И.С. Ларионова,
П.М. Брыляков. - №1538430; опубл. 15.09.89.
34. Барабошкин, К.С. Применение ультрадисперсных алмазных порошков детонационной природы для полирования рентгенооптических элементов / К.С. Барабошкин, А.И. Волохов, В.Ф. Комаров,
С.И. Костюков, Э.П. Кругляков, Е.А. Петров, М.Ф. Федорченко,
Н.И. Чхало // Оптический журнал. – 1996. – Т.63, №9. – С. 58-60.
35. Петров, Е.А. Модификация свойств резин ультрадисперсным алмазосодержащим материалом / Е.А. Петров, В.М. Зеленков // V Всесоюзное совещание по детонации: сб. докладов (Красноярск, 5-12 августа 1991). - Черноголовка: Изд. «Имтех», 1991. – С. 219-224.
36. Ковалев, В.В. Антифрикционный материал на основе политетрафторэтилена и ультрадисперсного углерода детонационной природы / В.В. Ковалев, И.Г. Идрисов // Ультрадисперсные порошки, материалы и наноструктуры. – Красноярск: Изд. КГТУ, 1996. – С. 214.
37. Лиин, Э.Э. Динамическое компактирование ультрадисперсных алмазов / Э.Э. Лин, С.А. Новиков, В.Г. Куропаткин, В.А. Медведкин, В.И. Сухаренко // Физика горения и взрыва. – 1995. – Т.31, №5. – С. 136-138.
38. Мальков, И.Ю. Образование алмаза из жидкой фазы углерода / И.Ю. Мальков, Л.И. Филатов, В.М. Титов, Б.В. Литвинов, А.Л. Чувилин, Т.С. Тесленко // Физика горения и взрыва. – 1993. – Т.27, №2. –
С. 131-134.
ГЛАВА 1. НАНОАЛМАЗЫ В ПРИРОДЕ
Ещё Грейнером [1] отмечалось близкое сходство детонационных наноалмазов (ДНА) с алмазами метеоритного происхождения. Это позволило Кощееву [2] проводить эксперименты с ДНА, имитирующими астрофизические процессы в окрестностях звезд. В настоящее время полагают, что алмазы в космосе образуются при космических взрывах сверхновых звезд [3] в периферийной области красных звезд-гигантов [4] и при ударном столкновении углеродсодержащих метеоритов [5]. Аламандола с коллегами [6, 7] считают, что углерод межзвездных облаков содержит до 20% наноалмазов. Однако ряд исследователей отвергают существование наноалмазов в межзвездном пространстве. Их мнение основывается на данных ультрафиолетовой спектроскопии соединений углерода в межзвездных пылевых облаках. Там была обнаружена необычайно широкая полоса в области спектра вблизи 217 нм и высказано предположение, что это связано с наличием графита, полициклических молекул типа нафталина или мелких фуллеренов, например C60. Однако ни одно из них полностью не отвечало характеру поглощения. В 1997 году Энрард предположил [8], что адекватный характер поглощения света должны проявлять большие фуллерены (C60, C240, C540 и т.д.), покрытые льдом. В этих фуллеренах при не слишком больших размерах (менее 20 нм) слабосвязанные электроны имеют колебательные уровни, отвечающие переходам в УФ-области спектра. Поэтому пылевые облака из таких углеродных продуктов могли бы характеризоваться поглощением в ультрафиолетовой части спектра. Энрардом было допущено, что молекулярные кристаллы углерода рождаются в атмосферах звёзд и вначале имеют структуру алмаза, которые затем гидратируются молекулами воды. Однако Вдовяк [9] полагает, что в действительности необычное поглощение вызывается скоплениями крупных молекул нафталиноподобных веществ. Результаты программы исследований с инфракрасным космическим телескопом (ISO) также не позволили прийти к определенному мнению по этой проблеме: предполагалось наличие фуллеренов [10], наноалмазов [11], смеси аллотропных модификаций углерода [12-13].
Первые исследования состава межзвёздной пыли, проведенные космическим аппаратом «Stardust» с пятью частицами пыли, показали наличие полимерных гетероароматических соединений [14].
В метеоритах также впервые была обнаружена гексагональная фаза алмаза, получившая название лонсдейлит [15] (позже фаза лонсдейлита была обнаружена и в других природных алмазах [16]). Размеры отдельных зерен фаз кубического алмаза и лонсдейлита очень малы и составляют всего 9 и 5 нм соответственно при содержании лонсдейлита до 30% по массе. Помимо этого, сходную структуру и морфологию имеют и так называемые импактные алмазы, образовавшиеся при взрыве небесных тел при соударении с поверхностью Земли, например, в гигантском метеоритном кратере на севере Сибирской платформы (Попигайская котловина) [17].
Следует отметить также, что алмазы с высокой массовой долей аморфной фазы несовершенной структуры размером частиц
10…15 мкм кубической или скелетовидной формы (т.н. метаморфические алмазы) обнаружены и на Земле в метаморфических комплексах [18]. На рентгенограммах этих алмазов присутствует только отражение алмаза (111) и широкое гало в области Ө = 6…18º, свидетельствующее о наличии аморфной фазы. Установлено, что облучение образцов этих алмазов рентгеновским излучением при комнатной температуре приводит к упорядочиванию кристаллической структуры, проявляющемуся в появлении отражений алмазной фазы (220), (311) и (400), и уменьшению интенсивности аморфной фазы [19].
Источником наноалмазов на Земле могут быть и высшие алмазоподобные молекулы (тетраадамантан и пентаадамантан), найденные в сырой нефти [20, 21].
Таким образом, наноалмазы являются первым сверхтвёрдым веществом, которое образовалось после Большого взрыва и достаточно широко распространено в природе.
Неалмазные фазы углерода (sp2 углерод) всегда присутствуют наряду с фазой алмаза (sp3 углерод) в конденсированных продуктах детонации углеродсодержащих ВВ с отрицательным кислородным балансом. Их массовая доля зависит от параметров взрывного процесса. Образование этих фаз связано с тем, что в процессе детонации – процессе с изменяющимися параметрами (давлением и температурой) - всегда создаются условия для перехода алмаз ® НФУ. Степень этого перехода обеспечивается условиями проведения эксперимента. Образование НФУ связано с вторичными процессами и обусловлено пониженными давлениями и температурами в области термодинамической неустойчивости ДНА, где также реализуется p, T – область конденсации графита.
Впервые были изучены углеродные конденсированные продукты детонации тринитротолуола [22]. Методом просвечивающей электронной микроскопии были обнаружены слоистые графитные структуры, состоящие из 5...10 изогнутых слоев углерода. По расчётам авторов образование углерода происходило при температуре детонации тринитротолуола – порядка 4×103 K (в более поздних работах температуру оценивают в 3×103 K) и давлении 15 МПа. Согласно данным рентгенографического исследования профиль линии углерода (002) конденсированных продуктов детонации был чрезвычайно широким. При изучении продуктов детонации тринитротолуола с циклотриметилентринитрамином были также обнаружены изогнутые углеродные ленты толщиной около 4 нм [1]. Расстояние между слоями углерода (соответствующее отражению углерода (002)) составило 0,350 нм. В соответствии с принятой классификацией углеродных материалов [23] неалмазную фазу углерода детонационного синтеза следует отнести к неграфитизирующим сажам, а по фазовому составу и составу поверхностных групп – к окисленным углеродам (углям).