Смекни!
smekni.com

Рассматриваются вопросы изучения свойств наноалмазов детонационного синтеза (стр. 5 из 28)

При содержании азота 0,2 масс.% постоянная решётки алмаза увеличивается на 0,01% [35].

Наличие азота в кристаллической решётке алмаза проявляется в ИК спектре поглощения полосами в диапазоне 1000...1300 см-1 [42]. Высказано предположение [35], что полосы поглощения в ИК области алмаза 1282, 1204, 1099 и 481 см-1 относятся к колебаниям С-N.

При приблизительно одинаковой общей концентрации азота в природных и синтетических алмазах (1019...1020 ат/см3) [35,43] природные алмазы содержат преимущественно азот в виде непарамагнитных агрегаций примесных атомов, расположенных в соседних узлах кристаллической решётки, а синтетические алмазы – в основном в виде одиночных парамагнитных атомов замещения [44].

Установлено, что в спектре ЭПР взрывных алмазов отсутствует сигнал примесных центров азота, характерный для алмазов статического синтеза [45, 46]. Алмаз статического синтеза АСМ 160/125 мкм характеризуется в спектре ЭПР характерным азотным триплетом с
g = 2,0025±0,0005 и шириной DНm » 2 э. Высокодисперсный алмаз статического синтеза характеризуется наличием одиночной линии разорванных связей, налагающейся на центральную азотную линию. У алмаза, полученного взрывом, в спектре ЭПР присутствует одиночная линия с таким же значением g-фактора, что и у алмаза статического синтеза, и DНm » 5 э. Интенсивность линий разорванных связей гораздо выше, а сигнал от примесных центров азота отсутствует. Аналогичный спектр ЭПР имеет алмаз взрывного происхождения из метеоритного кратера.

Исследуя спектры ЭПР алмазов статического синтеза, Надолинный [47] показал, что внедренные в кристаллическую решётку алмаза атомы азота агрегированы с атомами никеля или кобальта.

В то же время расчёты, произведенные для алмазного кластера из 30 атомов, показали, что возможна структура с одним внедренным атомом углерода в центре связи или на плоскости (100), которая будет проявляться в спектре ЭПР [48].

Взрывные алмазы содержат углерод в количестве от 87 до 92%, водород 0,5...1,5%, азот от 0,1 до 2,5%, кислород – остальное [49]. Наличие кислорода подтверждается составом десорбируемых газов – процесс нагревания до температуры 1173 K сопровождается выделением оксидов углерода, воды и водорода и суммарной потерей 5...8% массы образца.

О сложном составе ДНА свидетельствует состав газов, выделяющихся при его термодесорбции: в диапазоне 673...973 K выделялись H2, H2O, CO, CO2, CH4, C2H6, а свыше 973 K – только Н2 и СО [50]. Причем для водорода имеется два состояния – одно с энергией активации процесса десорбции 24,7 кДж/моль (физически адсорбированный), а второе – с энергией активации +112 кДж/моль (химически связанный). Водород из ДНА выделяется при 800...1500 K [51]. В последующем [52], при анализе состава термодесорбируемых ДНА газов, водород не был обнаружен. В продуктах десорбции были обнаружены только азот, диоксид углерода и метан. Состав газов, приписываемый в работе [22] ультрадисперсному алмазу, совпадает с составом газов для первичных конденсированных продуктов детонации ВВ (ДУ). Следует отметить, что, возможно, состояние выделяемого водорода зависит от условий проведения эксперимента. При масс-спектроскопическом определении образец ДНА кратковременно выдерживается при очень низком давлении (несколько Па), при хроматографическом методе определения образец выдерживается 2 часа при давлении 103 Па, чего оказывается достаточно для взаимодействия первично выделившегося водорода с углеродом алмаза и выделением метана.

Исследования элементного состава ДНА, проведенные в ФГУП ФНПЦ «Алтай», показали [53, 54], что в его состав входят кроме углерода, азот, водород и кислород (содержание элементов, масс.%): углерод 75...90; водород 0,6…1,5; азот 1,0...4,5; кислород – остальное).

Исследования элементного состава конденсированных продуктов детонации в ходе процесса выделения ДНА дали следующие
результаты [54]: исходный ДУ можно охарактеризовать условной брутто-формулой С100Н5,3N2,8O4,1, а ДНА – С100Н23,7N2,4O22,9.

Если допустить, что атом углерода связан только с одним гетероатомом (водородом, кислородом или азотом), то таких атомов углерода в ДНА около 50%. Это суммарная характеристика, и предполагается, что ядро алмазного кластера имеет состав, более обогащенный углеродом, а периферия алмазного кластера – иной, с повышенным содержанием кислорода и азота [54, 55]. Согласно расчётам частица ДНА размером 4 нм содержит 1,2.104 атомов углерода, из которых примерно 25% являются поверхностными. В этом случае, если предположить, что внутри будут только атомы углерода, то состав поверхности можно представить брутто-формулой С100Н44,8N11,2O36,4. Из этой формулы следует, что в поверхностном слое на каждый атом углерода приходится почти один гетероатом [54].

При изучении дефектов кристаллической решётки ДНА методами ЭПР, спектроскопии комбинационного рассеяния и фотолюминесценции, было установлено [56], что азот не замещает атомы углерода. Это можно объяснить наличием азота во внутренней полости частиц ДНА (см. главу 8).

Таким образом, по сравнению с природными алмазами ДНА характеризуется повышенным содержанием азота, водорода и кислорода, и без удаления этих элементов не следует ожидать высокой теплопроводности материалов с ДНА.

Существенный вклад в загрязнение вносят стенки взрывной камеры, благодаря которым обязательным спутником ДНА являются соединения железа. Исследование влияния дисперсности ДНА на магнитозависимую сверхвысокочастотную адсорбцию показало наличие распределения примесных атомов железа по всему объёму частиц [57]. Таким же образом распределяется железо и в первичных углеродных продуктах детонации [26]. В связи с этим получение ДНА без примесей железа представляется весьма проблематичным.

Примеси никеля [58], железа и кобальта [59] могут выступать в качестве катализаторов гидрирования алмаза. Этим, по-видимому, объясняется образование метана при нагревании ДНА в атмосфере водорода. Вполне вероятно, что азот, входящий в состав ДНА, каталитически гидрируется с образованием аммиака и синильной кислоты [60].

Таким образом, частица ДНА размером около 4 нм состоит примерно из 1,2∙104 атомов углерода, из них около 3∙103 находятся на поверхности кристалла. На каждые 100 поверхностных атомов углерода приходится 20…140 атомов водорода, 16…128 атомов кислорода и 8…16 атомов азота, образующих различные химически активные
группы.

ГЛАВА 4. СТРУКТУРА И ФАЗОВЫЙ СОСТАВ ДНА

Степень совершенства кристаллической структуры алмаза детонационного синтеза зависит от условий взрывного синтеза. Так, электронограмма алмаза, полученного из активированного угля при ударном обжатии 80 МПа за 10-12 с, характеризуется набором трёх отражений (111), (220) и (311) кубического политипа. Размер области когерентного рассеяния этих алмазов оценен по уширению линий примерно в 10 нм [61, 62].

В условиях ударного обжатия графита в смеси с металлом образуется кубический и 2Н гексагональный политип алмаза [63] в соотношении (для алмазов торговой марки Mypolex) 78 объёмн.% кубического политипа и 22 объёмн.% гексагонального [64]. По данным Товстогана, доля лонсдейлита во взрывных алмазах, полученных ударным обжатием чугуна, может доходить до 50% [65].

Алмазы, полученные при детонации смесей углерода с взрывчатыми веществами. При детонации смесей графита с циклотриметилентринитрамином образуются алмаз кубической и гексагональной модификации в смеси с исходным графитом в количестве до
25...30 масс.% [66], а Ямада и Савоока обнаружили также n-алмаз и
i-углерод [67] в виде частиц округлой формы.

Фазовый состав алмазов, полученных из углерода взрывчатых веществ (ДНА). Процесс образования ДНА протекает за время порядка 10-6 с, затем температура и давление снижаются с 3000...4000 K и c 20...30 ГПа до нормальных значений (градиент падения давления и температуры определяется условиями подрыва). Естественно, что вследствие высокой неравновесности этого процесса в конечных продуктах содержится несколько фаз углерода. Эти наноалмазы, вероятнее всего, должны иметь алмазное ядро с оболочкой из неалмазного углерода. Это связано с процессом графитизации алмазов в волне разгрузки, когда давление резко падает, а температура образца остается высокой [68, 69].

В продуктах детонации циклотриметилентринитрамина в ледяной оболочке наряду с кубическим политипом алмаза авторы обнаружили еще одну фазу алмаза [70]. (Возможно, этой фазой мог быть i-углерод, так как в продуктах детонации содержится достаточно большая концентрация азота, или карбин, обнаруженный позднее в продуктах детонации зарядов ВВ тринитротолуол-циклотриметилентринитрамин массой 150 кг [71].) При детонации смеси углерода с циклотриметилентринитрамином на рентгенограмме заметен широкий максимум аморфной фазы [66], на который авторы не обратили внимания.
Впоследствии [72, 73] было установлено, что в продуктах детонации тринитротолуола с циклотриметилентринитрамином содержание аморфной фазы может доходить до 80% (рентгенографически она определяется по интенсивности отражения с межплоскостным расстоянием d = 0,418 нм). Искаженные алмазные структуры – i-углерод и
n-алмаз - не обнаружены.

Таким образом, существенным отличием алмазов, полученных из углерода взрывчатых веществ, является наличие одной кристаллической фазы алмаза (кубический политип) и аморфной алмазной фазы. Можно предположить, что её количество определяется условиями проведения процесса детонации: в процессе ударного обжатия, где используют ВВ с низкой скоростью детонации (5200 м/с), аморфная фаза отсутствует, а в более высокоскоростных процессах – обнаружена. Это можно объяснить тем, что аморфная фаза является промежуточным состоянием при образовании кристаллической фазы ультрадисперсного алмаза.