Смекни!
smekni.com

Ладная тематика ов, эссе и курсовых работ студентов по разделам программы (стр. 10 из 21)

27. Точки покоя системы двух однородных линейных уравнений с постоянными действительными коэффициентами.

28. Фазовый портрет траекторий системы в окрестности положения равновесия.. Устойчивость типа точки покоя по отношению к малому возмущению.

29. Элементы вариационного исчисления. Функционал, его вариация, экстремум функционала.

30. Уравнение Эйлера для экстремалей.

31. Квазилинейные уравнения в частных производных первого порядка, характеристическая система, характеристики.

Составитель: проф. Стёпин С.А.

ДИСЦИПЛИНА «Теория функций комплексной переменной»

Предел последовательности комплексных чисел. Ряды с комплексными членами. Сфера Римана. Формула Эйлера. Функции комплексной переменной. Предел и непрерывность.

Комплексная производная. Дифференцируемые функции комплексной переменной.

Геометрический смысл модуля и аргумента комплексной производной.

Голоморфные функции и конформные отображения. Голоморфность и конформность в бесконечно удалённой точке. Производная обратной функции. Дробно-линейные отображения. Степень и радикал, экспонента и логарифм. Тригонометрические функции.

Интеграл от функции комплексной переменной по кусочно-гладкой кривой и его свойства.

Первообразная. Формула Ньютона-Лейбница. Интегральная теорема Коши. Интегральная формула коши и следствия из неё. Основная теорема алгебры.

Функциональные ряды. Почленное интегрирование рядов. Степенные ряды и их свойства.

Теорема Коши о разложимости голоморфной в круге функции в степенной ряд и следствия из неё. Теорема Лиувилля. Бесконечная дифференцируемость голоморфных функций. Интегральная формула Коши для производных. Теорема Гурса(без док-ва). Связь гармонических и голоморфных функций.

Теорема Вейерштрасса о равномерно сходящихся рядах голоморфных функций. Нули голоморфных функций. Теорема о предельной точке нулей. Теорема единственности для голоморфных функций.

Ряды Лорана. Область сходимости ряда Лорана. Теорема Лорана. Неравенство Коши для коэффициентов ряда Лорана.

1. Изолированные особые точки (конечные и в бесконечности). Теорема Римана. Описание особых точек через главную часть ряда Лорана.

2. Вычеты. Теорема Коши о вычетах. Формулы для вычисления вычетов в полюсах. Вычет в бесконечности. Теорема Коши о вычетах для неограниченных областей. Теорема о сумме вычетов.

3. Лемма Жордана. Вычисление интегралов с помощью вычетов.

Составители: проф. Печенцов А.С., доц. Кудрявцев Н.Л.

ДИСЦИПЛИНА «Уравнения математической физики»

1. Классификация и основные задачи уравнений математической физики Классификация и характеристическая форма дифференциальных уравнений с частными производными 2-го порядка в случае n независимых переменных. Характеристики. Классификация и приведение к каноническому виду дифференциальных уравнений с частными производными 2-го порядка в случае 2 независимых переменных. Вывод уравнений малых колебаний струны. Основные задачи уравнений гиперболического типа в многомерном случае. Вывод уравнения теплопроводности в одномерном случае и основные задачи. Основные задачи для многомерного уравнения теплопроводности и диффузии. Основные задачи для стационарных уравнений. Внешние и внутренние задачи.

2. Дополнительные сведения о рядах, преобразовании Фурье и обыкновенным дифференциальным уравнениям Ряды Фурье, спектр сигнала. Аналог ряда Фурье в многомерном пространстве, в бесконечномерном пространстве.

Преобразование Фурье, преобразование Фурье от производной. Свёртка.

Множители Лагранжа для уравнения n-го порядка с постоянными коэффициентами. Корректность задачи по Адамару. Метод Дюамеля решения задачи Коши для неоднородного дифференциального уравнения. Краевые задачи. Задача Дирихле. Задача Неймана. Функция Грина.

Задача на собственные значения. Задача Штурма-Лиувилля.

3. Метод Фурье решения уравнений математической физики. Преобразование Фурье Метод Фурье в случае струны с закреплёнными концами. Метод Фурье для уравнения теплопроводности. Метод Фурье для уравнения Лапласа. Метод преобразования Фурье для однородного уравнения колебаний струны , для уравнения теплопроводности.

4. Уравнения эллиптического типа. Уравнение Лапласа, Формула Грина. Гармонические функции. Задачи Дирихле и их решение с помощью функций Грина.

5. Теория потенциала. Потенциал простого слоя, двойного слоя. Задача Неймана.

6. Волновое уравнение. Задача Коши, формула Даламбера, формула Кирхгофа. Принцип Гюйгенса. Формула Пуассона. Метод Дюамеля. Задачи Гурса и Дарбу.

7. Уравнение параболического типа. Некорректные задачи. Принцип экстремума для уравнения теплопроводности. Формула Пуассона. Решение задачи Коши-Дирихле для неоднородного уравнения теплопроводности. Некорректные задачи уравнений математической физики.

Составитель: проф. Прилепко А.И.

Дисциплина «Интегральные уравнения»

Ряды Фурье и специальные функции

1. Ряды Фурье в n-мерном пространстве. Сигнал, спектры сигнала, энергия сигналов.

2. Задача Штурма –Лиувилля в n-мерном пространстве.

3. Задача Штурма –Лиувилля (обычный случай, особый случай).

4. Простейшие специальные функции. Полиномы Лежандра, Чебышёва-Эрмита, Чебышева- Лагерра.

5. Уравнение Бесселя. Задача Штурма-Лиувилля для уравнения Бесселя. Ряды Фурье-Бесселя.

6. Задача Штурма –Лиувилля в n-мерном пространстве для уравнений эллиптического типа.

7. Колебание мембраны.

8. Задача Штурма –Лиувилля для получения кратных тригонометрических рядов Фурье.

9. Метод Фурье разделения переменных для уравнений эллиптического типа для задачи Штурма –Лиувилля в n-мерном пространстве.

10. Задача Штурма –Лиувилля для круга.

11. Задача Штурма –Лиувилля для шара. Полиномы Лежандра. Уравнение сферических функций.

12. Сферические функции как собственные функции задачи Штурма-Лиувилля.

13. Сферические функции в n-мерном пространстве, метод разделения переменных, ряды Фурье по сферическим функциям.

Аналитическая теория дифференциальных уравнений. Асимптотика. Асимптотические ряды

1. Ряды Лорана, вычеты. Аналитическое продолжение. Многозначные функции. Ветви.

2. Перемножение рядов. Метод Фробениуса.

3. Регулярные особые точки. Метод Фробениуса нахождения двух линейно независимых решений.

4. Интегральное представление полиномов Лежандра и его производящие функции. Решение уцравнения Бесселя методом Фробениуса, Производящая функция и интегральное представление.

5. Асимптотические ряды, их свойства.

6. Колеблющиеся и неколеблющиеся решения обыкновенного дифференциального уравнения 2-го порядка и их асимптотика. Асимптотика функций Бесселя.

7. Теоремы Вейерштрасса о рядах аналитических функций.

8. Интегралы от параметра в комплексной плоскости.

9. Несобственные интегралы от параметра в комплексной плоскости.

Ряды Фурье. Преобразования Фурье и Лапласа

1. Ряды Фурье. Дискретные спектры.

2. Преобразование Фурье. Непрерывные спектры.

3. Определение оригинала и изображения по Лапласу.

4. Формула обращения преобразования Лапласа.

5. Свойства преобразования Лапласа.

6. Свёртка оригиналов, образ Лапласа от свёртки.

Обобщённые функции (распределения) и их преобразования Фурье

1. Регулярные и сингулярные обобщённые функции.

2. Дельта-функция. Дифференцирование и сходимость обобщённых функций.

3. Пространство быстро убывающих функций, пространство медленно растущих обобщённых функций , преобразования Фурье в них.

4. Свёртка.

Физически реализуемые сигналы. Сигналы с конечным спектром

1. Сигналы с конечным спектром. Теорема Пели-Винера.

2. Теорема Котельникова для передачи сигналов с конечным спектром.

3. Понятие о фильтрации неслучайных сигналов.

4. Дискретное и быстрое преобразования Фурье.

5. Физически реализуемые сигналы.

6. Теорема Пели-Винера в вещественной области.

7. Преобразование Гильберта.

8. Z-преобразование.

9. Применения преобразований Фурье и Лапласа физически реализуемых сигналов.

10. Взаимнокорреляционные и автокорреляционные функции.

11. Понятие системы передачи сигналов.

Случайные процессы. Интегральные уравнения

4. Случайные процессы. Взаимнокорреляционные и автокорреляционные функции по времени.

5. Спектральные плотности взаимнокорреляционных и автокорреляционных функций.

6. Фильтр Калмана- Бьюси.

7. Уравнения Винера-Хопфа.

8. Понятие об интегральных уравнениях Вольтерра, Фредгольма, Абеля и Радона.

Составитель проф. Прилепко А.И.

ЛИТЕРАТУРА

Основная

69. Бараненков Г.С., Демидович Б.П. и др. Задачи и упражнения по математическому анализу для втузов (под ред. Демидовича Б.П.) — М.: изд. Аст: Астрель, 2003.

70. Бицадзе А.В., Калиниченко Д.Ф. Сборник задач по уравнениям математической физики. М., Наука, 1985 (Альянс, 2007).

71. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. М., Наука, 1984 (Дрофа, 2006).

72. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление. М., Наука, 1988 (Дрофа, 2007).

73. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы. Ряды. ФКП. М., Наука, 1985 (Дрофа, 2005).

74. Бугров Я.С., Никольский С.М. Высшая математика: Задачник. М., Наука, 1982. (Физматлит, 2001).

75. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике. — М.:ФИЗМАТЛИТ, 2003(серия “Классический университетский учебник”).

76. Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А. Математический анализ в вопросах и задачах. М., Наука, Физматлит, 2001.

77. Владимиров В.С., Жаринов В.В. Уравнения математической физики: учебник для вузов, М., Наука, 2000.