Смекни!
smekni.com

Ладная тематика ов, эссе и курсовых работ студентов по разделам программы (стр. 11 из 21)

78. Владимиров К.С., Жаринов В.В. Уравнения математической физики: задачник для вузов, М., Наука, 2000.

79. Воеводин В.В. Линейная алгебра. М., Наука, 1980 (Лань, 2008).

80. Гусак А.А. Высшая математика. Т. 1,2. — Минск: изд. ТетраСистемс, 2008.

81. Головина Л.И. Линейная алгебра и некоторые ее приложения, М., Наука, 1979.

82. Б.П. Демидович, В.П. Моденов, Дифференциальные уравнения. С.П-б.: «Иван Фёдоров», 2003

83. Ефимов Н.В. Краткий курс аналитической геометрии. — М.: ФИЗМАТЛИТ, 2005.

84. Ильин В.А., Куркина А.В. Высшая математика. — М.: Проспект: изд. МГУ, 2004 (серия “Классический университетский учебник”).

85. Ильин В.А., Позняк Э.Г. Аналитическая геометрия: Учебник для вузов. М. Физматлит, 2007.

86. Ильин В.А., Позняк Э.Г. Линейная алгебра: Учебник для вузов. М. Физматлит, 2007.

87. Клетеник Д.В. Сборник задач по аналитической геометрии. Профессия: Спб, 2005

88. Кудрявцев Л.Д. Краткий курс математического анализа. т. 1, 2. Альфа, 1998 (Физматлит, 2005).

89. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Т.1 Предел. Непрерывность. Дифференцируемость. М., Физматлит, 2003.

90. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Т. 2. Интегралы. Ряды. М., Физматлит, 2003.

91. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Т. 3. Функции нескольких переменных. М., Физматлит, 2003.

92. Минорский В.П. Сборник задач по высшей математике. — М.: ФИЗМАТЛИТ, 2001.

93. Пикулин В.П., Похожаев С.И. Практический курс по уравнениям математической физики. М., Наука, 1995.

94. Привалов И.И. Введение в теорию функций комплексного переменного. Высшая школа,1999

95. Привалов И.И. Аналитическая геометрия. Лань, 2008

96. Сборник задач по математике для втузов. Под ред. Ефимова А.В., Поспелова А.С. М., Физматлит, ч.1-4, 2001 – 2004.

97. Свешников А.Г., Тихонов А.Н. Теория функций комплексного переменного. М., Наука, 1999 (Физматлит, 2001). (ФИЗМАТЛИТ, 2004).

98. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М., Наука, 1993, М.: Изд-во МГУ, 2004(серия “Классический университетский учебник”).

99. Цубербиллер О.Н. Задачи и упражнения по аналитической геометрии. Лань, 2007

100. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М., Эдиториал УРСС, 2000.

Дополнительная

24. Архипов Г.И., Садовничий В.А., Чубариков В.Н. Лекции по математическому анализу. М., Высшая школа, 1999.

25. Александров П.С., Лекции по аналитической геометрии, М.-С-Пб., Лань, 2008.

26. Баврин И.И. Краткий курс высшей математики. М.: ФИЗМАТЛИТ,2003.

27. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. Учебник для вузов. М., Физматлит, 2007.

28. Беклемишева Л.А., Петрович А.Ю., Чурбанов И.А. Сборник задач по аналитической геометрии и линейной алгебре. М., Наука, 1987.

29. Васильева А.Б., Свешников А.Г., Тихонов А.Н. Дифференциальные уравнения. М., Физматлит, 2005.

30. Волковыский Л.И., Лунц Г.Л., Араманович И.Г. сборник задач по теории функций комплексного переменного. М., Физматлит, 2002.

31. Высшая математика. Специальные главы (Методы линейной алгебры, математического анализа, теории вероятностей, математической статистики) под редакцией Розановой С.А. , М., Физматлит, 2008.

32. Зорич В.А. Математический анализ. т.1, 1997, т.2, 1998 (МЦНМО, 2007).

33. Ибрагимов Н.Х. Практический курс дифференциальных уравнений и математического моделирования. Н-Н. Изд-во НГУ им. Н.И. Лобачевского, 2007.

34. Ильин В.А., Позняк Э.Г. Основы математического анализа. М., Наука, Ч. 1, 1980, Ч. 2, 1982 (Физматлит, 2008).

35. Ильин В.А., Садовничий В.А., Сендов Бл.Х. Математический анализ. М., Наука, 1998.

36. Колмогоров А.И., Фомин С.В. Элементы теории функций и функционального анализа. М., Наука, 1981.

37. Краснов М.Л. Обыкновенные дифференциальные уравнения. М., Высшая школа, 1983.

38. Кудрявцев Л.Д. Курс математического анализа. М., Высшая школа, т. 1,2, 1998,т. 3, 1999 (Дрофа, 2003).

39. Наумов В.А. Руководство к решению задач по аналитической геометрии и линейной алгебре. М., Наука, 1993.

40. Никольский С.М. Курс математического анализа, М., Т. 1, 2, Физматлит, 2001

41. Петрова В.Т. Лекции по алгебре и геометрии. Т.1 и 2. М.: Владос, 1999.

  1. Смирнов В.И. Курс высшей математики Т.1-2, С-Пб., БХВ-Петербург, 2008.

Программы математических дисциплин в образовательной области

«Почвоведение» (УГС 020700,020701), «Экология» (УГС 020801)

1.Базовая часть

Дисциплина

Семестр

Трудоем.

Высшая математика

1-2

14

ИТОГО: 14 з.е.

2.Вариативная часть

Элементы уравнений математической физики (3з.е.)

Примечание. Основной курс изучается студентами всех специальностей данного направления. В вузах, или потоках, дающих углубленную математическую подготовку, дополнительно изучаются дисциплины углубленного курса и дисциплины вариативной части в объеме до 24 зачетных единиц по решению вуза.

Дисциплина “Высшая математика»

1.Определители и системы линейных уравнений. Определители второго и третьего порядков, их свойства. Понятие об определителях n-го порядка. Решение систем линейных уравнений с помощью определителей.

2. Векторная алгебра и аналитическая геометрия. Декартовы координаты на плоскости и в пространстве. Векторы. Линейные операции над векторами. Проекция вектора на ось, теоремы о проекциях. Координаты и длина вектора. Разложение вектора по ортам. Скалярное произведение векторов и его свойства. Векторное произведение векторов и его свойства. Смешанное произведение трех векторов и его геометрический смысл.

Плоскость в пространстве. Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей. Расстояние от точки до плоскости. Прямая в пространстве. угол между прямой и плоскостью. Прямая на плоскости. Угол между прямыми. Условия параллельности и перпендикулярности прямых. Расстояние от точки до прямой.

Кривые второго порядка на плоскости. Окружность. Канонические уравнения эллипса, гиперболы и параболы.

Понятие о полярной системе координат. Связь между декартовыми и полярными координатами.

3. Комплексные числа. Понятие комплексного числа. Тригонометрическая форма комплексного числа. Действия с комплекными числами. Решение квадратных уравнений.

4. Теория пределов функций одной переменной. Понятие функции. Простейшие функции и их графики. Предел функции в точке. Единственность предела. Локальная ограниченность функции, имеющей предел. Бесконечно малые функции и их свойства. Свойства функции, имеющей ненулевой предел. Теоремы о пределе суммы, разности, произведения и частного двух функций, имеющих предел. Переход к пределу в неравенствах. Теорема о пределе «зажатой» функции. Первый замечательный предел. Предел функции при х→ +∞, х→−∞, х→∞. Односторонние пределы. Теорема о связи предела функции и односторонних пределов. Предел последовательности. Теорема осуществовании предела неубывающей и ограниченной сверху последовательности. Число “е”. Непрерывность функции в точке. Классификация точек разрыва. Локальные свойства непрерывных функций. Теоремы о пределе и непрерывности сложной функции. Свойства функций, непрерывных на отрезке. Эквивалентные функции. Таблица эквивалентных функций.

5. Дифференциальное исчисление функций одной переменной. Производная, ее геометрический и физический смысл. Дифференциал функции. Непрерывность дифференцируемой функции. Теоремы о производной суммы, разности, произведения и частного двух функций. Производная сложной функции. Производная обратной функции. Таблица производных. Локальный экстремум функции. Необходимое условие локального экстремума. Теорема Лагранжа о конечном приращении функции и ее следствия. Условия возрастания ( убывания ) функции на промежутке. Правила Лопиталя вычисления пределов частного двух функций. Производные и дифференциалы высших порядков. Формула Тейлора для многочлена. Формула Тейлора для функции. Достаточные условия локального экстремума функции. Выпуклость вверз ( вниз ) графика функции, достаточные условия. Точки перегиба.

6. Интегральное исчисление функций одной переменной. Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Таблица неопределенных интегралов. Определенный интеграл Римана. Необходимое условие интегрируемости. Достаточные условия интегрируемости. Простейшие свойства определенного интеграла. Теорема о среднем для определенного интеграла. Непрерывность и дифференцируемость интеграла с переменным верхним пределом. Формула Ньютона-Лейбница. Замене переменных и интегрирование по частям в определенном интеграле. Понятие о несобственных интегралах. Приложения определенного интеграла.

7.Дифференциальное исчисление функций нескольких переменных. Понятие функции нескольких переменных. Предел, непрерывность, частные производные первого порядка. Дифференцируемость функции нескольких переменных в точке. Необходимые и достаточные условия дифференцируемости. Дифференциал функции. Правила вычисления частных производных сложных функций. Производная по направлению и градиент функции. Частные производные и дифференциалы высших порядков. Локальные экстремумы функции нескольких переменных. Необходимые и достаточные условия локального экстремума. Метод наименьших квадратов для вывода эмпирических формул.