Смекни!
smekni.com

Ладная тематика ов, эссе и курсовых работ студентов по разделам программы (стр. 12 из 21)

8. Обыкновенные дифференциальные уравнения. Основные понятия: порядок дифференциального уравнения, общее и частное решения. Простейшие уравнения первого порядка (с разделяющимися переменными, однородные, линейные ). Однородные и неоднородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.

9.Ряды. Числовые ряды. Необходимое условие сходимости числового ряда. Признаки сходимости числовых рядов. Абсолютно и условно сходящиеся числовые ряды. Понятие функционального ряда и его области сходимости. Степенные ряды. Радиус и интервал сходимости степенного ряда. Ряд Тейлора бесконечно дифференцируемой функции. Разложение в ряд Тейлора основных элементарных функций. Ряды Фурье. Разложение в ряд Фурье кусочно-дифференцируемой функции.

Вариативная часть

10.Уравнения математической физики. Вывод уравнения теплопроводности и решение первой краевой задачи для стержня методом разделения переменных. Температурные волны в почве. Три закона Фурье.Уравнение теплопроводности в пространстве. Уравнение Лапласа. Задача Дирихле.

Составитель- доц. А.И. Камзолов (МГУ им. М.В. Ломоносова)

Рекомендуемая литература:

Основная

1. Бараненков Г.С., Демидович Б.П. и др. Задачи и упражнения по математическому анализу для втузов (под ред. Демидовича Б.П.) — М.: изд. Аст: Астрель, 2003.

2. Бицадзе А.В., Калиниченко Д.Ф. Сборник задач по уравнениям математической физики. М., Наука, 1985 (Альянс, 2007).

3. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. М., Наука, 1984 (Дрофа, 2006).

4. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление. М., Наука, 1988 (Дрофа, 2007).

5. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы. Ряды. ФКП. М., Наука, 1985 (Дрофа, 2005).

6. Бугров Я.С., Никольский С.М. Высшая математика: Задачник. М., Наука, 1982. (Физматлит, 2001).

7. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике. — М.:ФИЗМАТЛИТ, 2003(серия “Классический университетский учебник”).

8. Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А. Математический анализ в вопросах и задачах. М., Наука, Физматлит, 2001.

9. Владимиров В.С., Жаринов В.В. Уравнения математической физики: учебник для вузов, М., Наука, 2000.

10. Владимиров К.С., Жаринов В.В. Уравнения математической физики: задачник для вузов, М., Наука, 2000.

11. Воеводин В.В. Линейная алгебра. М., Наука, 1980 (Лань, 2008).

12. Гусак А.А. Высшая математика. Т. 1,2. — Минск: изд. ТетраСистемс, 2008.

13. Головина Л.И. Линейная алгебра и некоторые ее приложения, М., Наука, 1979.

14. Б.П. Демидович, В.П. Моденов, Дифференциальные уравнения. С.П-б.: «Иван Фёдоров», 2003

15. Ефимов Н.В. Краткий курс аналитической геометрии. — М.: ФИЗМАТЛИТ, 2005.

16. Ильин В.А., Куркина А.В. Высшая математика. — М.: Проспект: изд. МГУ, 2004 (серия “Классический университетский учебник”).

17. Ильин В.А., Позняк Э.Г. Аналитическая геометрия: Учебник для вузов. М. Физматлит, 2007.

18. Ильин В.А., Позняк Э.Г. Линейная алгебра: Учебник для вузов. М. Физматлит, 2007.

19. Клетеник Д.В. Сборник задач по аналитической геометрии. Профессия: Спб, 2005

20. Кудрявцев Л.Д. Краткий курс математического анализа. т. 1, 2. Альфа, 1998 (Физматлит, 2005).

21. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Т.1 Предел. Непрерывность. Дифференцируемость. М., Физматлит, 2003.

22. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Т. 2. Интегралы. Ряды. М., Физматлит, 2003.

23. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Т. 3. Функции нескольких переменных. М., Физматлит, 2003.

24. Минорский В.П. Сборник задач по высшей математике. — М.: Физматлит 2001.

25. Пикулин В.П., Похожаев С.И. Практический курс по уравнениям математической физики. М., Наука, 1995.

26. Привалов И.И. Введение в теорию функций комплексного переменного. Высшая школа,1999

27. Привалов И.И. Аналитическая геометрия. Лань, 2008

28. Сборник задач по математике для втузов. Под ред. Ефимова А.В., Поспелова А.С. М., Физматлит, ч.1-4, 2001 – 2004.

29. Свешников А.Г., Тихонов А.Н. Теория функций комплексного переменного. М., Наука, 1999 (Физматлит, 2001). (ФИЗМАТЛИТ, 2004).

30. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М., Наука, 1993, М.: Изд-во МГУ, 2004(серия “Классический университетский учебник”).

31. Цубербиллер О.Н. Задачи и упражнения по аналитической геометрии. Лань, 2007

32. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М., Эдиториал УРСС, 2000.

Программы математических дисциплин в образовательной области

«Химия» (УГС 020100, 020101)

1. Базовая часть

Дисциплина

Семестр

Трудоем.

Аналитическая геометрия

1

3

Математический анализ

1-4

8

Линейная алгебра

2

3

Теория вероятностей

3

2

Элементы прикладной математической статистики

4

1

Уравнения математической физики

4

2

ИТОГО: 19 з.е.

2.Углубленный курс

Дисциплина

Семестр

Трудоем.

Аналитическая геометрия

1

4

Математический анализ

1-4

12,5

Дифференциальные уравнения

3

2,5

Линейная алгебра

2

3

Теория вероятностей

4

4

ИТОГО: 26 з.е.

3.Вариативная часть

Методы математической физики (3 з.е.).

Примечание. Основной курс изучается студентами всех специальностей данного направления. В вузах, дающих углубленную математическую подготовку, дополнительно изучаются дисциплины углубленного курса и дисциплины вариативной части в объеме до 29 зачетных единиц по решению вуза.

Дисциплина «Аналитическая геометрия»

1. ВЕКТОРЫ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Векторы, их координаты. Линейные операции над векторами.

Скалярное произведение векторов, его координатное выражение. Векторное

произведение векторов, его координатное выражение. Смешанное произведение векторов, его координатное выражение.

2. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

Прямая на плоскости, уравнение прямой на плоскости с угловым коэффициентом; уравнение прямой в отрезках.

Нормальное уравнение прямой, расстояние от точки до прямой.

Взаимное расположение двух прямых, угол между прямыми.

Линии второго порядка: эллипс, гипербола, парабола. Вывод их канонических уравнений и исследование формы. Вырожденные кривые второго порядка. Приведение общего уравнения второго порядка к каноническому виду.

3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

Плоскость в пространстве. Уравнение плоскости в отрезках.

Нормальное уравнение плоскости, расстояние от точки до плоскости.

Прямая в пространстве. Канонические и параметрические уравнения прямой.

Взаимное расположение двух плоскостей, плоскости и прямой, двух прямых в пространстве.

Поверхности второго порядка: эллипсоид и гиперболоиды, параболоиды,

конус и цилиндры.

Дисциплина « Математический анализ» (курсивом выделены части, относящиеся к только к углублённому курсу)

1. ВВЕДЕНИЕ В АНАЛИЗ И ТЕОРИЯ ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ

Элементы компьютерной математики: Множества и операции над ними.

Декартово произведение множеств, бинарные отношения. Отображения и их свойства.

Множество действительных чисел. Элементы конечной арифметики . Аксиома отделимости. Приближённые вычисления. Верхние и нижние грани. Стягивающиеся отрезки. Предельные точки.

2. ТЕОРИЯ ПРЕДЕЛОВ, НЕПРЕРЫВНОСТЬ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

Предел последовательности, предел функции. Бесконечно малые. Арифметические свойства предела. Предельный переход в неравенствах. Вычисление

.Предел монотонной ограниченной функции. Число
.

Критерий Коши существования предела последовательности, предела функции. Непрерывность, точки разрыва. Свойства непрерывных функций.

Непрерывность элементарных функций. Символы

. Вычисление пределов
.

Промежуточные значения непрерывной на отрезке функции. Ограниченность непрерывной на отрезке функции. Равномерная непрерывность. Теорема Кантора.

3. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОГО ПЕРЕМЕННОГО

Производная, её естественнонаучный смысл и основные свойства. Производные элементарных функций. Производная обратной функции. Производная сложной функции. Производная функции, заданной параметрически.