4. Общекультурное и практическое значение динамических моделей социальных процессов. Дифференциальное уравнение, описывающее простейшую динамику численности населения. Динамическая паутинообразная модель рынка. Моделирование динамики долга. Общие модели макроэкономической динамики. Динамическая модель инфляции в переходной экономике. Динамическая модель роста выпуска в условиях конкуренции. Неоклассическая динамическая модель роста. Динамическая модель рынка с прогнозируемыми ценами.
5. Общекультурное и практическое значение вероятностной парадигмы и стохастического анализа. Стохастические модели риска и рационального поведения. Вероятностный анализ в модели Лоренца концентрации доходов, вероятностный смысл индекса Джини. Вероятностные модели в исследовании политических предпочтений электората, в задачах подбора персонала. Вероятностные модели ценностной реориентации в обществе. Вероятностный подход к определению справедливой цены консультационной услуги экспертов. Вероятностное моделирование процессов ценообразования на фондовом рынке. Индекс энтропии как показатель неупорядоченности в разделе рынка между продавцами. Применение корреляционного анализа для исследования влияния отдельных факторов и их комбинаций на прогнозные характеристики социально-экономических систем, регрессионный анализ как один из простейших инструментов социально-экономического прогнозирования. Применение модели «игры с природой» в анализе инвестиционных сценариев. Примеры применения вероятностных расчетов в текущем анализе хозяйственной деятельности.
6. Общекультурное и практическое значение парадигмы оптимизации и принятия решений. Экономический смысл задачи ЛП. Классические задачи: управление запасами, транспортная задача, задача о назначениях как примеры оптимизационных моделей. Оптимизационные модели сотрудничества и конфликта в области разоружения, стратегического противостояния, вооруженной борьбы. Игровые модели конкурентной борьбы на рынке и их сравнительный анализ (модели Курно, Бертрана, Штакельберга, Эджворта и др.). Схемы манипулирования голосованием, формированием рыночных предпочтений потребителей, формированием ценностных ориентаций в обществе. Игровые модели в инвестиционном анализе.
1. Акимов О.Е. Дискретная математика: логика, группы, графы. – М.: Лаборатория Базовых Знаний, 2001.
2. Бородин А.Н. Элементарный курс теории вероятностей и математической статистики. Серия «Учебники для ВУЗов». – СПб.: Лань, 1999, 2002.
3. Глухов В.В., Медников М.Д., Коробко С.Б. Математические методы и модели для менеджмента. Серия «Учебники для ВУЗов». – СПб.: Лань, 2000, 2005.
4. Зимина О.В., Кириллов А.И., Сальникова Т.А. Высшая математика. Решебник. – М.: Физматлит, 2000.
5. Интрилигатор Майкл. Математические методы оптимизации и экономическая теория. – М.: Айрис-пресс, 2002.
6. Колемаев В.А., Калинина В.Н. Теория вероятностей и математическая статистика: Учебник. – М.: ИНФРА-М, 1999, 2000; ЮНИТИ-ДАНА, 2003.
7. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. – М.: Дело, 2000.
8. Кремер Н.Ш. Теория вероятностей и математическая статистика. – М.: ЮНИТИ-ДАНА, 2000, 2003.
9. Кудрявцев Л.Д. Краткий курс математического анализа. Т.1,2. – Висагинас: “Alfa”, 1998.
10. Матвеев Н.М. Обыкновенные дифференциальные уравнения: Учебное пособие. – СПб.: Специальная литература, 1996.
11. Матвеев Н.М. Сборник задач и упражнений по обыкновенным дифференциальным уравнениям: Учебное пособие. – СПб.: Лань, 2002.
12. Общий курс высшей математики для экономистов: Учебник / Под ред. В.И.Ермакова. – М.: ИНФРА-М, 2000.
13. Петросян Л.А., Зенкевич Н.А., Семина Е.А. Теория игр: Учебное пособие для университетов. – М.: Высшая школа, 1998.
14. Розен В.В. Математические модели принятия решений в экономике: Учебное пособие. – М.: Книжный дом «Университет», Высшая школа, 2002.
15. Сборник задач по высшей математике для экономистов: Учебное пособие / Под ред. В.И.Ермакова. – М.: ИНФРА-М, 2001.
16. Таха Хэмди А. Введение в исследование операций. – М.: ИД «Вильямс», 2001, 2008.
17. Фихтенгольц Г.М. Основы математического анализа. Т.1,2. – СПб.: Лань, 2001.
18. Шевцов Г.С. Линейная алгебра: Теория и прикладные аспекты: Учебное пособие. – М.: Финансы и статистика, 2003.
19. Шипачев В.С. Курс высшей математики: Учебник. – М.: ТК Велби, Изд-во Проспект, 2004.
20. Шипачев В.С. Задачник по высшей математике: Учебное пособие для ВУЗов. – М.: Высшая школа, 2001.
1. Аронович А.Б., Афанасьев М.Ю., Суворов Б.П. Сборник задач по исследованию операций. – М.: Изд-во МГУ, 1997.
2. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. – М.: Лаборатория Базовых Знаний, 2000.
3. Белько И.В., Свирид Г.П. Теория вероятностей и математическая статистика. Примеры и задачи: Учебное пособие. – Минск: Новое знание, 2002.
4. Бочаров П.П., Печинкин А.В. Теория вероятностей. Математическая статистика: Учебное пособие. – М.: Гардарика, 1998.
5. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии: Учебник для ВУЗов. – Ростов-на-Дону: Феникс, 1997.
6. Вентцель Е.С. Исследование операций. Задачи, принципы, методология. Учебное пособие для студентов ВУЗов. – М.: Высшая школа, 2001.
7. Вентцель Е.С. Теория вероятностей: Учебник для ВУЗов. – М.: Высшая школа, 2002.
8. Вероятность и математическая статистика: Энциклопедия / Гл. ред. Ю.В.Прохоров. – М.: Большая Российская энциклопедия, 1999.
9. Владимирский Б.М., Горстко А.Б., Ерусалимский Я.М. Математика. Общий курс. – СПб.: Лань, 2002.
10. Гнеденко Б.В. Курс теории вероятностей: Учебник. – М.: Эдиториал УРСС, 2001.
11. Горелова Г.В., Кацко И.А. Теория вероятностей и математическая статистика в примерах и задачах с применением Excel. Учебное пособие для ВУЗов. – Ростов-на-Дону: Феникс, 2002.
12. Григорьев С.Г. Линейная алгебра: Учебное пособие по высшей математике. – М.: ИВЦ «Маркетинг», 1999.
13. Григорьев С.Г. Векторная алгебра и аналитическая геометрия. Учебное пособие по высшей математике. – М.: ИВЦ «Маркетинг», 2000.
14. Грэхем Рональд, Кнут Дональд, Паташник Орен. Конкретная математика. – М.: Мир, 1998.
15. Есипов А.А., Сазонов Л.И., Юдович В.И. Практикум по обыкновенным дифференциальным уравнениям. – М.: Вузовская книга, 2001.
16. Ерусалимский Я.М. Дискретная математика: теория, задачи, приложения. – М.: Вузовская книга, 1999, 2001, 2004.
17. Замков О.О., Черемных Ю.Н., Толстопятенко А.В. Математические методы в экономике: Учебник. – М.: Дело и Сервис, 1999.
18. Зимина О.В. Линейная алгебра и аналитическая геометрия: Учебный комплекс. – М.: Изд-во МЭИ, 2000.
19. Ильин В.А., Куркина А.В. Высшая математика: Учебник. – М.: ООО «ТК Велби», 2002.
20. Колягин Ю.М., Луканкин Г.Л., Яковлев Г.Н. Математика. Алгебра и элементарные функции. Учебное пособие. Ч.1. – М.: Агар, 1999.
21. Красс М.С. Математика для экономических специальностей: Учебник. – М.: ИНФРА-М, 1999; Дело, 2002.
22. Кремер Н.Ш. и др. Математика для экономистов: от Арифметики до Эконометрики: учебно-справочное пособие. – М.: «Высшее образование», 2007.
23. Кузнецов А.В., Сакович В.А., Холод Н.И. Высшая математика: Математическое программирование: Учебник. – Минск: Вышэйшая школа, 2001.
24. Лабскер Л.Г. Вероятностное моделирование в финансово-экономической области. – М.: Альпина Паблишер, 2002.
25. Лабскер Л.Г., Бабешко Л.О. Игровые методы в управлении экономикой и бизнесом: Учебное пособие. – М.: Дело, 2001.
26. Левин Дэвид М., Стефан Дэвид, Кребиль Тимоти С., Беренсон Марк Л. Статистика для менеджеров с использованием Microsoft Excel. – М.: ИД «Вильямс», 2004.
27. Лексаченко В.А. Логика. Множества. Вероятность. – М.: Вузовская книга, 2001.
28. Лихтарников Л.М., Сукачева Т.Г. Математическая логика. Курс лекций. Задачник-практикум и решения. Серия «Учебники для ВУЗов». – СПб.: Лань, 1999.
29. Макарова Н.В., Трофимец В.Я. Статистика в Excel: Учебное пособие. – М.: Финансы и статистика, 2002.
30. Математика. Большой энциклопедический словарь / Гл. ред. Ю.В.Прохоров. – М.: Большая Российская энциклопедия, 1998.
31. Минюк С.А., Ровба Е.А., Кузьмич К.К. Математические методы и модели в экономике: Учебное пособие. – Минск: ТетраСистемс, 2002.
32. Ниворожкина Л.И. и др. Основы статистики с элементами теории вероятностей для экономистов: Руководство для решения задач. – Ростов-на-Дону: Феникс, 1999.
33. Никитина Н.Ш. Математическая статистика для экономистов: Учебное пособие. – М.: ИНФРА-М, 2001.
34. Новиков Ф.А. Дискретная математика. – СПб.: Питер, 2001.
35. Оре Ойстин. Графы и их применение. – М.: Эдиториал УРСС, 2002.
36. Пономаренко А.К., Сахаров В.Ю., Степанова Т.В., Черняев П.К. Учебные и контрольные задания по обыкновенным дифференциальным уравнениям: Учебное пособие. – СПб.: Изд-во СПбГУ, 2000.
37. Практикум по эконометрике: Учебное пособие / Под ред. И.И.Елисеевой. – М.: Финансы и статистика, 2001.
38. Проскуряков И.В. Сборник задач по линейной алгебре. – М.: Лаборатория Базовых Знаний, 2000.
39. Протасов И.Д. Теория игр и исследование операций: Учебное пособие. – М.: Гелиос АРВ, 2003.
40. Романко В.К. Курс дифференциальных уравнений и вариационного исчисления. – М.: Лаборатория Базовых Знаний, 2001.
41. Романовский И.В. Дискретный анализ. Учебное пособие. – СПб. – М.: Невский диалект – Физматлит, 2000, 2001, 2003.
42. Сборник задач и упражнений по высшей математике: Математическое программирование: Учебное пособие / Колл. авт., под ред. А.В.Кузнецова, Р.А.Рутковского. – Минск: Вышэйшая школа, 2002.