Смекни!
smekni.com

Ладная тематика ов, эссе и курсовых работ студентов по разделам программы (стр. 1 из 21)

ПРИЛОЖЕНИЕ 1.

Приложение 1 Элементы применения математики в социально-экономических и социально-управленческих исследованиях и в современной деловой практике – возможная прикладная тематика рефератов, эссе и курсовых работ студентов по разделам программы

1. Общекультурное и практическое значение парадигмы непрерывности и дифференциального и интегрального исчисления. Исследование функций, характеризующих экономические и менеджериальные явления и процессы (изокванта, изокоста, линия безразличия, функция полезности, функция спроса, функция предложения и др.) методами дифференциального исчисления. Применение дифференциального исчисления при исследовании эластичности спроса и предложения, для определения максимальных чистых выгод, для анализа потребительского поведения, для определения объема выпускаемой продукции и издержек, при расчете максимальной прибыли в условиях монополии и конкуренции. Применение рядов Тейлора при оценке изменения цены облигации. Применение второй производной при оценке выпуклости облигации. Формула непрерывно начисляемых процентов. Поиск экстремума функции нескольких переменных при определении прибыли, при оптимизации распределения ресурсов. Применение интегрального исчисления в модели Лоренца концентрации доходов.

2. Общекультурное и практическое значение матричного анализа. Неотрицательные матрицы в описании межотраслевых производственных процессов. Матрицы «затраты – выпуск», матричные балансовые модели. Линейная матричная модель международной торговли, или модель взаимных закупок товаров. Положительные матрицы экспертных оценок и вычисление на их основе вектора приоритетов целей социально-экономического развития. Собственный вектор как модель устойчивой согласованности мнений экспертов. Алгебра неотрицательных матриц в анализе социально-управленческой информации. Приведение матрицы к диагональному виду в целях формирования наиболее информативных социально-экономических индикаторов (комплексных индексных показателей).

3. Общекультурное и практическое значение парадигмы дискретности и дискретного анализа. Комбинаторные задачи планирования выборочных обследований. Перечислительные задачи о назначениях. Экстремальные комбинаторные задачи о выборе информативных признаков, о лотереях. Задачи логического проектирования процедур выбора решений (формирование сценариев). Задачи о голосовании, о коалициях, о составлении вопросников. Модели группового выбора и планирования социально-экономического поведения. Задача о максимальном потоке и о минимальном разрезе в сети. Максимальный поток в транспортной сети. Задача «на узкие места». Задача о потоке минимальной стоимости. Задачи о складе, о поставщике, о многопродуктовых потоках. Метод критического пути при управлении проектом (совокупностью работ). Выделение компонент связности графов матриц экспертных оценок в методах выявления «точек зрения».

4. Общекультурное и практическое значение динамических моделей социальных процессов. Дифференциальное уравнение, описывающее простейшую динамику численности населения. Динамическая паутинообразная модель рынка. Моделирование динамики долга. Общие модели макроэкономической динамики. Динамическая модель инфляции в переходной экономике. Динамическая модель роста выпуска в условиях конкуренции. Неоклассическая динамическая модель роста. Динамическая модель рынка с прогнозируемыми ценами.

5. Общекультурное и практическое значение вероятностной парадигмы и стохастического анализа. Стохастические модели риска и рационального поведения. Вероятностный анализ в модели Лоренца концентрации доходов, вероятностный смысл индекса Джини. Вероятностные модели в исследовании политических предпочтений электората, в задачах подбора персонала. Вероятностные модели ценностной реориентации в обществе. Вероятностный подход к определению справедливой цены консультационной услуги экспертов. Вероятностное моделирование процессов ценообразования на фондовом рынке. Индекс энтропии как показатель неупорядоченности в разделе рынка между продавцами. Применение корреляционного анализа для исследования влияния отдельных факторов и их комбинаций на прогнозные характеристики социально-экономических систем, регрессионный анализ как один из простейших инструментов социально-экономического прогнозирования. Применение модели «игры с природой» в анализе инвестиционных сценариев. Примеры применения вероятностных расчетов в текущем анализе хозяйственной деятельности.

6. Общекультурное и практическое значение парадигмы оптимизации и принятия решений. Экономический смысл задачи ЛП. Классические задачи: управление запасами, транспортная задача, задача о назначениях как примеры оптимизационных моделей. Оптимизационные модели сотрудничества и конфликта в области разоружения, стратегического противостояния, вооруженной борьбы. Игровые модели конкурентной борьбы на рынке и их сравнительный анализ (модели Курно, Бертрана, Штакельберга, Эджворта и др.). Схемы манипулирования голосованием, формированием рыночных предпочтений потребителей, формированием ценностных ориентаций в обществе. Игровые модели в инвестиционном анализе.

ПРИЛОЖЕНИЕ 2. Авторские программы математических дисциплин по отдельным направлениям подготовки бакалавров.

Программы математических дисциплин в образовательной области

«Лечебное дело»(«Фундаментальная медицина») (УГС060101)

1. Базовый курс

Дисциплина

Семестр

Трудоем.

Высшая математика

1

5

ИТОГО: 5 з.е.

Дисциплина «ВЫСШАЯ МАТЕМАТИКА»

1. Непрерывность и предел функции в точке (основные теоремы)

2. Дифференциальное исчисление функций одного и нескольких переменных, его приложения.

3. Интегральное исчисление функций одного переменного, применения.

4. Дифференциальные уравнения:

5. Элементы векторного анализа, определители.

6. Простейшие сведения о комплексных числах и формулы Эйлера.

7. Понятие о двойном интеграле.

8. Вычисление интеграла Гаусса.

9. Элементы комбинаторики (бином Ньютона, треугольник Паскаля)

10. Понятие об n-мерном пространстве.

Составитель: доц. Ивашев-Мусатов О.С. (МГУ им. М.В. Ломоносова)

Рекомендуемая литература:

Основная

1. Бараненков Г.С., Демидович Б.П. и др. Задачи и упражнения по математическому анализу для втузов (под ред. Демидовича Б.П.) — М.: изд. Аст: Астрель, 2003.

2. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. М., Наука, 1984 (Дрофа, 2006).

3. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление. М., Наука, 1988 (Дрофа, 2007).

4. Бугров Я.С., Никольский С.М. Высшая математика: Задачник. М., Наука, 1982. (Физматлит, 2001).

5. Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А. Математический анализ в вопросах и задачах. М., Наука, Физматлит, 2001.

6. Воеводин В.В. Линейная алгебра. М., Наука, 1980 (Лань, 2008).

7. Гусак А.А. Высшая математика. Т. 1,2. — Минск: изд. ТетраСистемс, 2008.

8. Головина Л.И. Линейная алгебра и некоторые ее приложения, М., Наука, 1979.

9. Б.П. Демидович, В.П. Моденов, Дифференциальные уравнения. С.П-б.: «Иван Фёдоров», 2003

10. Ефимов Н.В. Краткий курс аналитической геометрии. — М.: Физматлит,2005.

11. Ивашев-Мусатов. Начала математического анализа.-М.: Физматлит,.2002

12. Ильин В.А., Куркина А.В. Высшая математика. — М.: Проспект: изд. МГУ, 2004 (серия “Классический университетский учебник”).

13. Ильин В.А., Позняк Э.Г. Аналитическая геометрия: Учебник для вузов. М. Физматлит, 2007.

14. Ильин В.А., Позняк Э.Г. Линейная алгебра: Учебник для вузов. М. Физматлит, 2007.

15. Клетеник Д.В. Сборник задач по аналитической геометрии. Профессия: Спб, 2005

16. Кудрявцев Л.Д. Краткий курс математического анализа. т. 1, 2. Альфа, 1998 (Физматлит, 2005).

17. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Т.1 Предел. Непрерывность. Дифференцируемость. М., Физматлит, 2003.

18. Минорский В.П. Сборник задач по высшей математике. — М.: ФИЗМАТЛИТ, 2001.

19. Привалов И.И. Аналитическая геометрия. Лань, 2008

20. Сборник задач по математике для втузов. Под ред. Ефимова А.В., Поспелова А.С. М., Физматлит, ч.1-4, 2001 – 2004.

21. Цубербиллер О.Н. Задачи и упражнения по аналитической геометрии. Лань, 2007.

Программы математических дисциплин в образовательной области

«Биоинженерия и биоинформатика» (УГС 020210)

2. Базовая часть

Дисциплина

Семестр

Трудоем.

Математический анализ

1-3

9

Линейная алгебра

2

3

ИТОГО: 12 з.е.

3. Вариативная часть

Дисциплина

Семестр

Трудоем.

Дифференциальные уравнения

3

3

ИТОГО: 3 з.е.