Смекни!
smekni.com

«Применение matlab для моделирования физических процессов» (стр. 1 из 2)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Выпускная работа по
«Основам информационных технологий»

Магистрант

кафедры радиофизики

Стамбакио Егор

Руководители:

профессор Борздов Владимир Михайлович

старший преподаватель

Кожич Павел Павлович

Минск – 2009 г.

Оглавление

Оглавление. 2

Список обозначений. 3

Реферат на тему «Применение MATLAB для моделирования физических процессов» 4

Введение. 4

Глава 1. Моделирование физических процессов. 4

1.1. Моделирование процессов переноса электронов в полупроводниках. 4

1.2. Преимущества использования MATLAB для разработки программ моделирования процессов переноса частиц в полупроводниках. 7

Заключение. 8

Список литературы. 8

Предметный указатель. 10

Интернет ресурсы. 11

Личный сайт. 12

Граф научных интересов. 13

Тестовые вопросы по основам информационных технологий. 14

Презентация магистерской работы. 15

Список литературы к выпускной работе. 16

Приложение 1. Презентация магистерской диссертации. 17


Список обозначений

ИС – интегральная схема

БИС – большая интегральная схема

СБИС – супербольшая интегральная схема

ЭВМ – электронная вычислительная машина

СВЧ – сверхвысокие частоты

Реферат на тему «Применение MATLAB для моделирования физических процессов»

Введение

Одним из важнейших этапов создания интегральных схем с субмикронными и нанометровыми размерами является физико-топологическое моделирование активных элементов интегральных схем. При этом при построении моделей, которые адекватно описывают процессы переноса носителей заряда в проводящих каналах очень малых (субмикронных) размеров, нужно учитывать влияние на дрейф носителей заряда специфических эффектов. Это связано, прежде всего, с созданием ультрабольших интегральных схем и полупроводниковых приборных структур с низкоразмерным электронным газом, изготавливаемых по промышленным технологиям. Основными особенностями численного моделирования переноса электронов в упомянутых выше структурах является необходимость учета квантовой природы носителей заряда.

Несмотря на то, что в настоящее время основная масса дискретных полупроводниковых приборов и интегральных схем (ИС, БИС, СБИС) изготавливается на основе кремния (Si), большое количество научных исследований и публикаций в области полупроводников и полупроводниковых приборов посвящено исследованию арсенид галлиевых (GaAs) соединений. Это обстоятельство связано, во-первых с тем, что приборы на основе GaAs являются гораздо более быстродействующими, особенно при малых размерах образцов, и во-вторых, на основе этих соединений имеется возможность создавать квантоворазмерные полупроводниковые структуры, которые обладают, в принципе, еще более высоким быстродействием. Приборы и интегральные схемы на GaAs служат элементной базой для сверхскоростной и СВЧ - электроники. Для дальнейшего усовершенствования таких приборов и улучшения их характеристик необходимо проведение большого объема как теоретических, так и экспериментальных исследований. Хорошо известно, что численное моделирование позволяет сократить материальные затраты связанные с этим. В то же время многие из существующих и хорошо разработанных методов численного моделирования не могут быть использованы непосредственно для расчета электрофизических свойств квантоворазмерных структур и приборов.

Глава 1. Моделирование физических процессов.

1.1. Моделирование процессов переноса электронов в полупроводниках

Моделирование процессов переноса в полупроводниках методом Монте-Карло

Анализ зарубежных и отечественных литературных источников показал, что одним из наиболее перспективных в методов моделирования переноса электронов в полупроводниках является метод Монте-Карло. В настоящей работе при построении численной модели переноса электронов в нелегированном GaAs в сильных электрических полях использован многочастичный метод Монте-Карло.

Целью работы является разработка модели переноса электронов в нелегированном GaAs в сильных электрических полях, разработка соответствующего алгоритма и реализующей его программы для расчета кинетических параметров, характеризующих перенос, и проведение вычислительного эксперимента по расчету дрейфовой скорости электронов в нелегированном GaAs в сильных электрических полях многочастичным методом Монте-Карло.

Для достижения цели необходимо было решить следующие задачи:

1. Сделать обзор доступных литературных источников по теме моделирования многочастичным методом Монте-Карло процессов переноса носителей заряда в полупроводниках, в частности в арсениде галлия (GaAs).

2. Разработать модель переноса электронов в нелегированном GaAs в сильных электрических полях на основе многочастичного метода Монте-Карло.

3. Разработать алгоритм и соответствующую программу для расчета кинетических параметров, характеризующих перенос.

4. Рассчитать частоты рассеяния для всех основных механизмов рассеяния электронов в GaAs в сильных электрических полях. В данной модели были учтены следующие механизмы рассеяния: рассеяние на акустических и оптических фононах, междолинное рассеяние и внутридолинное рассеяние

5. Показать адекватность разработанной модели и ее программной реализации

6. Провести вычислительный эксперимент по расчету дрейфовой скорости электронов в нелегированном GaAs в сильных электрических полях в интервале 0 ÷ 5 кВ/см в интервале температур 77 ÷ 300K.

Метод Монте-Карло позволяет проводить моделирование различных физических процессов на микроскопическом уровне до тех пор, пока характеристические размеры области моделирования значительно превышают длины волн де-Бройля носителей заряда. В противном случае, для моделирования процесса переноса частиц в квантоворазмерных полупроводниковых средах, должны использоваться специальные квантово-механические методы. В то же время, как и при моделировании переноса носителей заряда в объемных полупроводниковых структурах, рассматриваемый метод можно применять и к квантоворазмерным структурам с 2D- и 1D-электронным газом, поскольку в этом случае существуют направления, вдоль которых движение частиц остается свободным. Эти обстоятельства делают метод Монте-Карло одним из наиболее перспективных подходов к моделированию электрофизических свойств квантовых слоев, проволок и ряда других структур наноэлектроники.

При реализации метода Монте-Карло могут применяться два подхода: одночастичный и многочастичный. В первом из этих подходов рассматривается движение одной частицы, а во втором — движение ансамбля частиц. Использование этих двух подходов обусловлено, в первую очередь, необходимостью решения стационарных и нестационарных задач.

При исследовании стационарных процессов можно, опираясь на эргодическую теорему, заменить ансамбль частиц одной частицей, достаточно долго следить за ее движением во времени и на основании этого вычислить все необходимые средние по времени кинетические параметры, характеризующие данный стационарный перенос. Преимущество такого подхода состоит в относительно простой программной реализации и достаточно низких требованиях к ресурсам ЭВМ.

Задачи, требующие использования многочастичного подхода, возникают в ряде практически важных случаев. Во-первых, при изучении нестационарных процессов. Во-вторых, при моделировании процессов, где важно непосредственное взаимодействие между частицами. Чаще всего применяют разновидность многочастичного метода Монте-Карло, названную методом частиц. Суть этого метода заключается в том, что при расчете электрических полей в приборе все количество электронов в нем заменяется ансамблем порядка так называемых крупных частиц таким образом, чтобы их суммарный заряд был равен суммарному заряду электронов в моделируемой области, что позволяет учесть влияние пространственного распределения носителей заряда на электрическое поле в приборе. В то же время, при моделировании свободного пробега и рассеяния частица рассматривается как обычный электрон.

Итак, под задачами, требующими применение многочастичного метода Монте-Карло, понимаются такие случаи, где необходимо знать среднее по ансамблю в каждый из определенных моментов времени. А под задачами, решаемыми одночастичным методом — такие, где достаточно проследить движение одной частицы, и провести усреднение по времени. На основании этого можно сделать вывод о том, что время является важнейшей переменной в каждом из рассмотренных методов моделирования, так как его необходимо фиксировать, как при вычислении среднего по времени в одночастичных задачах, так и при определении состояния ансамбля частиц в любой момент времени при многочастичном моделировании.

1.2. Преимущества использования MATLAB для разработки программ моделирования процессов переноса частиц в полупроводниках

Использование программного комплекса MATLAB для реализации алгоритмов моделирования процессов переноса

Система MATLAB (сокращение от MATrix LABoratory - МАТричная Лаборатория) разработана фирмой The MathWorks, Inc. (США, г.Нейтик, шт. Массачусетс) и является интерактивной системой для выполнения инженерных и научных расчетов, которая ориентирована на работу с массивами данных. Система использует математический сопроцессор и допускает обращения к программам, написанным на языках Fortran, C и C++.