Увеличение количества носителей заряда происходит также под действием сильного электрического поля, воздействующего на кристаллическую решетку полупроводника. Под влиянием такого поля разрываются связи, удерживающие валентные электроны в атоме, и образуются новые электронно-дырочные пары, приводящие к возрастанию тока через переход.
Таким образом развивается процесс лавинообразного увеличения обратного тока полупроводника, то есть пробой р-n-перехода. Несмотря на лавинный характер, процесс остается управляемым: незначительное изменение напряжения на переходе вызывает существенное изменение тока через переход. В связи с тем что необходимая для этого напряженность электрического поля постоянна данного материала, напряжение пробоя (или стабилизации) возрастает с увеличением ширины р-n-перехода:
Uст=Еd,
где Uст — напряжение пробоя р-n-перехода, или напряжение стабилизации; Е напряженность электрического поля, при которой происходит лавинообразное умножение носителей заряда; d — ширина перехода.
Таким образом, изменяя ширину перехода, можно получить нужное напряжение пробоя. Выпускаются стабилитроны с напряжением стабилизации от единиц до сотен вольт, но в метрологической практике используют, как правило, стабилитроны с рабочим напряжением 6-10 В. Исключения могут встречаться в некоторых видах измерений. Так, например, при измерениях высоких постоянных и импульсных напряжений в качестве ИОН могут быть применены стабилитроны с большим значением напряжения.
Рассмотренный механизм пробоя наблюдается как у кремниевых, так и у германиевых р-n-переходов. Однако в процессе пробоя германиевых переходов выделяется значительное количество тепла, приводящее к появлению дополнительных пар носителей заряда. Эти носители маскируют картину лавинного пробоя и ухудшают вольт-амперную характеристику полупроводникового прибора. В кремниевых же p-n-переходах явление тепловой генерации свободных носителей заряда проявляется заметно слабее. Поэтому в качестве материала для полупроводниковых стабилитронов используется кремний.
Тем не менее изменение температуры окружающей среды и повышение температуры кремниевого стабилитрона под действием протекающего через него рабочего тока влияет на значение напряжения стабилизации. Нестабильность напря
жения стабилизации при изменении температуры перехода уменьшают путем термостабилизации (помещают стабилитрон в термостат) или температурной компенсации (включают в цепь основного стабилитрона дополнительные элементы).По принципу действия все меры напряжения — источники опорного напряжения — можно разделить на параметрические и компенсационные. В параметрических ИОН выходное напряжение меры снимается непосредственно с регулирующего элемента — кремниевого стабилитрона. В компенсационных ИОН выходное напряжение обычно отличается от напряжения кремниевого стабилитрона (используется масштабное преобразование), но сравнивается с ним для получения требуемого значения. Компенсационные ИОН позволяют получить значения выходного напряжения меры, отличающиеся от напряжения стабилизации стабилитрона при больших значениях допустимых рабочих токов, однако параметрические ИОН более просты и надежны в эксплуатации. Часто меры напряжения имеют схемы как параметрического ИОН, так и компенсационного и, соответственно, разные значения выходных напряжений меры.
Принцип действия параметрического стабилизатора можно пояснить на простейшей электрической схеме (рис. 6.3)
Он представляет собой делитель напряжения, состоящий из балластного резистора R и кремниевого стабилитрона Д, параллельно которому включается сопротивление нагрузки R„. Такой параметрический стабилизатор обеспечивает постоянство нерегулируемого выходного напряжения меры в некотором диапазоне изменений напряжения питания U„ и тока нагрузки /„. С помощью балластного резистора R устанавливается рабочий режим кремниевого стабилитрона. Влияние изменений температуры окружающей среды и p-n-перехода стабилитрона уменьшается путем термостабилизации.
Схема компенсационного стабилизатора напряжения отличается от схемы параметрического наличием системы автоматического регулирования, в которой выполняются сравнение выходного напряжения меры и напряжения стабилитрона, а также автоматическая компенсация изменений выходного напряжения.
Меры напряжения на кремниевых стабилитронах имеют ряд преимуществ по сравнению с мерами ЭДС на основе насыщенных нормальных элементов. Ими являются лучшие нагрузочные характеристики (токи нагрузки до 1-10 мА), меньшее значение выходного сопротивления меры (0,01-20 Ом в зависимости от принципа действия ИОН), меньшее время готовности к измерениям (0,5-2 ч), существенно меньшая чувствительность к транспортной тряске. Меры напряжения, воспроизводящие значение 1,018 В (имитирующие значение ЭДС нормального элемента), могут иметь выходное сопротивление, близкое к значению внутреннего сопротивления НЭ.
Но по характеристике долговременной стабильности значения воспроизводимого напряжения меры на стабилитронах уступают мерам ЭДС на основе насыщенных нормальных элементов. По этой причине для мер напряжения на кремниевых стабилитронах устанавливают меньшие промежутки времени после сличения с более точным средством измерений, в течение которых их напряжение будет соответствовать указанному значению с некоторой погрешностью (кратковременная стабильность). Обычно это 10 дней, 1, 3, 6 или 12 месяцев, причем для одной и той же меры может быть установлено сразу несколько интервалов с различными значениями нестабильности выходного напряжения.
Так, например, мера напряжения Н4-9, предназначенная для передачи размера единицы напряжения постоянного тока от вторичных эталонов к рабочим эталонам и средствам измерений на местах их эксплуатации и являющаяся компенсационным ИОН, воспроизводит два значения напряжения: 1,018 и 10,0 В. Нестабильность выходного напряжения меры за время после сличения с более точным эталоном составляет:
□ на выходе 1,018 В при выходном сопротивлении 1000 Ом: 0,0002 % — за 30 суток; 0,0003 % - за 90 суток; 0,0005 % - за 12 месяцев;
□ на выходе 10,0 В при выходном сопротивлении 0,1 Ом: 0,0001 % — за 30 суток; 0,0002 % - за 90 суток; 0,0004 % - за 12 месяцев.
Эта и подобные ей меры благодаря высокой кратковременной стабильности могут использоваться в качестве транспортируемого эталона при сличении эталонов различных уровней, в том числе эталонов разных стран, и для передачи размера единицы постоянного напряжения средствам измерений, транспортировка которых в удаленный метрологический центр по конструктивным особенностям затруднена или невозможна.
6.3. Калибраторы напряжения и силы тока
Калибраторами называют средства измерений, воспроизводящие калиброванные (нормированные) значения выходного сигнала (в данном случае — электрического напряжения и силы тока). В том, что выходной сигнал нормирован, то есть имеет установленные границы отклонений от заданного значения, заключается основное отличие калибраторов от обычных источников напряжения и силы тока. Калибраторы применяют для поверки или калибровки средств измерений вольтметров, амперметров, ваттметров, счетчиков электроэнергии и т. п. — методом прямых измерений, а также могут быть использованы для различного рода исследований.
В отличие от мер напряжения и ЭДС, воспроизводящих одно или несколько значений физической величины, калибраторы представляют собой многозначные меры, воспроизводящие физическую величину, как правило, в широком диапазоне значений и с высокой дискретностью установки заданного значения. Принцип действия калибратора может быть пояснен на примере простейшей структурной схемы (рис. 6.4).
В основе любого калибратора напряжения или силы тока лежит мера постоянного напряжения на стабилитроне (ИОН), размер напряжения которой преобразуется в определенный размер другой физической величины: переменное напряжение, постоянный или переменный ток — с помощью соответствующих измерительных преобразователей (калибраторам постоянного напряжения такое преобразование не требуется). Далее этот размер подвергается масштабному преобразованию цифроаналоговым преобразователем (ЦАП) с целью получения выходной величины заданного размера, усиливается по мощности (УМ) и поступает на выход прибора.
К числу метрологических характеристик калибраторов относятся:
□ диапазон воспроизводимых значений физической величины;
□ дискретность установки;
□ предел допускаемой погрешности установленного значения;
□ диапазон частот, воспроизводимых переменных напряжений и токов;
□ допустимый уровень пульсаций постоянного напряжения и тока или допустимый уровень искажений формы кривой переменного напряжения и тока;