Смекни!
smekni.com

«Эволюция числа ядрышкообразующих районов хромосом у животных» (стр. 1 из 5)

Курсовая работа

Студента второго курса факультета биоинженерии и биоинформатики МГУ им. М.В. Ломоносова

Снегирёва Александра Викторовича

на тему:

«Эволюция числа ядрышкообразующих районов хромосом у животных»

Научный руководитель:

д.б.н. Зацепина О.В.

Введение

Проблематика. Данная курсовая работа посвящена очень важным компонентам клеточного ядра, без существования которых невозможен весь процесс синтеза белка в эукариотической клетке, - ядрышкам (см. рис. 1). Ядрышки во множестве производят рибосомы – клеточные «машины» синтеза белка. Как известно, ядрышки образуются вокруг кластеров рибосомных генов (рДНК), кодирующих основные классы рРНК (18 S, 5.8 S и 28S), которые получили название ядрышковых организаторов или ядрышкообразующих районов хромосом (ЯОР). Поэтому всестороннее изучение ядрышек является одним из ведущих факторов развития современной биологии. Довольно много работ связано со свойствами рибосомных генов, с функционально-морфологическими и биохимическими аспектами их работы, с влиянием деятельности ядрышка на жизнь клетки в целом и т.д., но крайне мало работ, в которых проводится анализ изменения числа ЯОР у различных организмов разных таксономических групп. Так, из лично мне известных работ по этой теме – это обзор Лонга и Давида «Repeated genes in eukaryotes» двадцатипятилетней давности [1], где представлены сводная таблица по числу и локализации рДНК и генов 5 S РНК у ~ 30 различных видов живых организмов. Однако после этого обзора новых работ об эволюции числа ЯОР у животных не было опубликовано ни в отечественной, ни в зарубежной литературе. И это понятно: количество ЯОР сильно варьирует не только у разных организмов, но и в клетках одного организма, поэтому трудно находить соответствия между их числом и свойствами определенных клеток и организмов в целом. Тем более необходимо учитывать эволюционные моменты, например родственные отношения между группами организмов разных видов, отделов, классов и т.д., степень сходства их рибосомных генов. Предполагается, что межклеточные, межиндивидуальные и межвидовые различия по числу и локализации ЯОР имеют важный биологический смысл. Но до сих пор не удалось найти причины данного явления и решение этой проблемы. В данном обзоре тоже нет ответов на эти вопросы, хотя делаются предположения о путях дальнейших исследований в данной области, сделаны попытки поиска корреляций между числом ЯОР и важным биологическими параметрами видов, такими как продолжительность беременности, размеры организма и др. Здесь в основном рассмотрены межклассовые (у позвоночных животных) и межвидовые (на примере отряда Грызуны) различия в числе ЯОР, но затронута и тема внутривидовых различий в числе ЯОР (на примере лабораторных мышей).

Структура ядрышка. Для дальнейшего обсуждения проблемы необходимо знать и понимать некоторые общие моменты, связанные с изучаемыми объектами. Рассмотрим кратко структуру, свойства и функции компонентов ядрышек [2]. В ядрышке выделяют три основные зоны: фибриллярный центр (ФЦ, в нём находится неактивные гены рРНК ядрышка), плотный фибриллярный компонент (ПФК, содержит транскрибируемую рДНК и созревающую рРНК) и гранулярный компонент (ГК, где располагаются готовые субъединицы рибосом). Совокупностью ФЦ ядрышка фактически соответствует ЯОР метафазных хромосом. ЯОР располагаются во вторичных перетяжках хромосом, на которых в телофазе происходит новообразование ядрышек интерфазного ядра. При новообразовании ядрышки могут сливаться друг с другом, поэтому количество ядрышек обычно меньше, чем число ЯОР. Получившиеся таким образом ядрышки имеют весь объём генетической информации соединившихся ядрышек. ЯОР не является точечным локусом хромосомы, а является множественным по своей структуре, содержит несколько одинаковых генных участков, каждый из которых отвечает за образование ядрышка (например, при разрыве хромосомы в области ЯОР каждая из частей способна образовывать ядрышки). Число активных генов рРНК постоянно на геном, оно не меняется в зависимости от уровня транскрипции этих генов, при репликации ДНК происходит и удвоение числа генов рРНК. Однако, существуют случаи, когда гены рРНК подвергаются избыточной репликации для обеспечения продукции большего количества рибосом (если необходимо быстро и сильно увеличить синтез белка), в результате образуются экстрахромосомные рРНК, не связанные с ЯОР – происходит амплификация генов рРНК (например, в ооцитах земноводных и других животных).

Структура рДНК. Синтез рРНК. При синтезе рРНК сначала образуется молекула-предшественник 45S РНК, которая распадается на фрагменты (так называемый процессинг): 28S, 18S и 5,8S РНК (молекула 5S РНК, тоже участвующая в сборке рибосом, синтезируется независимо и локализация гена 5S рРНК не связана с ЯОР). С помощью электронного микроскопа удалось увидеть рибосомные гены «в работе»: на депротеинизованных и сильно распластанных препаратах ядрышек наблюдались структуры в виде «ёлочек» (рис. 2). На нити рДНК располагаются молекулы фермента РНК-полимеразы I, ответственные за синтез рРНК, от которых отходят нити-транскрипты из синтезируемых молекул РНК. При этом самые длинные транскрипты находятся на одной стороне «ёлочки» (соответствуют 45S РНК), а на противоположной стороне транскрипция только начинается. Такой участок ДНК с транскриптами называется транскрипционной единицей. Между транскрипционными единицами находятся зоны спейсеров, имеющие нуклеосомное строение и не участвующие в транскрипции. Такое чередование транскрипционных единиц со спейсерами и определяет множественность рибосомных генов.

Активация ЯОР. В неактивной форме ЯОР представлен в виде одного крупного фибриллярного центра, состоящего из рибосомных генов. В начале активации ядрышка происходит деконденсация рибосомных генов на периферии ФЦ, которые начинают транскрибироваться (синтезировать РНК). По мере усиления транскрипции единый ФЦ распадается на ряд более мелких ФЦ, связанных друг с другом декомпактизованными участками рДНК. При полной активации ядрышка все ФЦ деконденсируются и получается, что зоны ПФК содержат всю рДНК в активном состоянии. При инактивации ядрышка происходит обратный процесс конденсации рДНК. Такое инактивированное ядрышко структурно сходно с ЯОР в составе митотических хромосом. Процессы активации и инактивации играют весомую роль при определении числа и местоположения ЯОР.

Методы выявления ЯОР. Локализацию ЯОР можно довольно точно определить на митотических хромосомах с помощью окраски солями серебра, имеющих сродство к некоторым аргентофильным белкам ядрышка. Основными из них в митозе являются РНК-полимераза I и ее специфический транскрипционный фактор белок UBF. Этот метод получил название Ag-окраски или Ag-ЯОР окраски хромосом. Показано, что аргентофильными свойствами обладают только ЯОР, которые были активны в интерфазе, предшествующей митозу. Принято считать, что максимальное число Ag-ЯОР соответствует общему числу ЯОР в кариотипе, однако из этого правила есть многочисленные исключения. Более точным является определение числа ЯОР методом молекулярной гибридизации in situ. В первоначальном варианте для этого использовали метод радиоавтографии и меченную тритием рРНК, которая при взаимодействии с денатурированной ДНК в митотических хромосомах образует ДНК-рРНК-гибрид в тех местах, где последовательности ДНК комплементарны рРНК. В этих участках и происходит засвечивание фотографической эмульсии, т.е. появляются зерна восстановленного серебра. Однако в настоящее время для молекулярной гибридизации in situ используют нерадиографические методы и пробы рДНК, меченные маленькими молекулами (биотином или дигоксигенином), которые выявляются специфическими антителами, конъюгированными с флуорохромом. Этот вариант гибридизации in situ получил название флуоресцентной гибридизации (FISH). Сопоставление данных по окраске хромосом AgNO3 и FISH-метода обнаружения рДНК показало, что Ag-окраска выявляет кластеры функционально-активных рРНК генов, тогда как FISH-метод выявляет все ЯОР, включая неактивные. Как увидим в дальнейшем, существование этих двух методов является одной из причин несовпадения результатов по количеству и локализации ЯОР.

Сборка рибосом. 60S рибосомная субъединица состоит из трёх фрагментов: 28S, 5,8S, 5S РНК. 40S рибосомная субъединица состоит из 18S РНК. Субъединицы покидают ядрышко и через ядерные поры попадают в цитоплазму. Из 40S и 60S в цитоплазме образуется полная работающая 80S рибосома: сначала 40S субъединица связывается с иРНК, а затем и с большой субъединицей (коэффициенты седиментации и механизм образования рибосом приведён для эукариотических клеток).

Рис. 1 Ультраструктура ядрышка

Рис.2 Рибосомные гены

Цели и задачи

Главная цель данной работы – сделать некоторые предположения и выводы о связи между числом ЯОР и общебиологическими различиями организмов, то есть проследить эволюцию ЯОР на конкретных примерах организмов. Поэтому мы выявили следующие основные задачи работы:

  1. сравнение изменения числа ЯОР с изменением числа хромосом в диплоидном наборе по классам организмов;
  2. сравнение изменения числа ЯОР в эволюционном ряду: от беспозвоночных до человека;
  3. сравнение числа ЯОР в отдельно взятом отряде (Грызуны – в этом отряде наибольший разброс числа ЯОР);
  4. сравнение данных по числу ЯОР у домашней мыши Mus musculus.

Материалы и методы