Смекни!
smekni.com

За курс основной школы в 2011 году автор-составитель: Алексеев И. Г (стр. 6 из 7)

Примеры выполнения заданий учащимися

Пример 1.

За решение выставляется 3 балла; допущены ошибки в употреблении символики.

Пример 2.

За решение можно выставить 3 балла: ход решения правильный, и, по сути, верный ответ получен. Но решение содержит логическую ошибку: выполнив проверку (которая в данном случае не является составной частью решения и может служить только цели самоконтроля), учащийся допустил вычислительную ошибку и сделал неправильный вывод о наличии постороннего решения, которого в принципе в данной ситуации быть не может.

Замечание. За нерациональное решение баллы не снимаются. Хотя хотелось бы, чтобы для сильного учащегося наличие уравнения

сразу же служило сигналом к попытке применить условие равенства нулю произведения. Приведенное решение показывает (и это не единичный случай), что не наработаны некоторые стандартные приемы, обязательные для подготовки сильного ученика.

2. Из пункта А в пункт В, расположенный ниже по течению реки, отправился плот. Одновременно навстречу ему из пункта В вышел катер. Встретив плот, катер сразу повернул и поплыл назад. Какую часть пути от А до В пройдет плот к моменту возвращения катера в пункт В, если скорость катера в стоячей воде вчетверо больше скорости течения реки?

//Ответ: плот пройдет

всего пути.

//Решение. Пусть скорость течения реки (и плота) х км/ч. Тогда скорость катера против течения равна 4хх = 3х км/ч, а по течению 4х + х = 5х км/ч. Следовательно, скорость катера против течения в 3 раза больше скорости плота, а по течению – в 5 раз больше скорости плота. Если плот до встречи проплыл S км, то катер – в 3 раза больше, т.е. 3S км. После встречи катер пройдет 3S км, а плот – в 5 раз меньше, т.е.

км. Всего плот пройдет
. Отношение пройденного плотом пути ко всему пути равно
.

Другое возможное решение. Пусть скорость течения реки (и плота) х км/ч. Тогда скорость катера против течения равна 4хх = 3х км/ч, а по течению 4х + х = 5х км/ч. Скорость сближения катера и плота равна х + 3х = 4х км/ч. Встреча произошла через

ч. За это время плот проплыл
км, а катер –
км. Обратный путь катер пройдет за
ч. Плот за это время проплывет расстояние, равное
км, а всего он проплывет
км.
Баллы

Критерии оценки выполнения задания

4

Ход решения верный, все его шаги выполнены, получен верный ответ.

3

Ход решения верный, все его шаги выполнены, но допущена одна ошибка – в преобразованиях или в вычислениях, с ее учетом дальнейшие шаги выполнены правильно.

0

Другие случаи, не соответствующие указанным критериям.

Примеры выполнения заданий учащимися

Пример 1.

Ход решения верный, введены нужные обозначения, приведены пояснения, но допущена вычислительная ошибка, с ее учетом решение доведено до конца. Можно выставить 3 балла.

Пример 2.

Не найдена скорость катера против течения реки; решение оценивается 0 баллами.

2. Найдите все значения а, при которых неравенство

х2+ (2а + 4)х + 8а + 1 ≤ 0 не имеет решений.

//Ответ:

; другая возможная форма ответа:
(1; 3).

//Решение.

График функции у = х2 + (2а + 4)х + 8а + 1 – парабола, ветви которой направлены вверх. Значит, данное неравенство не имеет решений в том и только том случае, если эта парабола целиком расположена в верхней полуплоскости. Отсюда следует, что дискриминант квадратного трехчлена х2 + (2а + 4)х + 8а + 1 должен быть отрицателен.

Имеем:

.

Решив квадратное неравенство, получаем

.

Замечание. Учащийся может воспользоваться формулой дискриминанта

.

Другое возможное решение. Найдем ординату вершины параболы у0 и выясним, при каких значениях а выполняется неравенство у0 > 0.

Баллы

Критерии оценки выполнения задания

4

Найден правильный способ решения, все шаги выполнены верно, получен правильный ответ.

3

Найден правильный способ решения, все шаги выполнены верно, но допущена одна ошибка технического характера (вычислительная или в преобразованиях), при этом решение доведено до конца (ответ может отличаться от правильного).

0

Другие случаи, не соответствующие указанным критериям.

Комментарий. Ошибки при составлении дискриминанта квадратного трехчлена или в применении алгоритма решения квадратного неравенства являются существенными, и при их наличии за решение выставляется 0 баллов.

Примеры выполнения заданий учащимися

Пример 1.

Все шаги решения выполнены верно (хотя есть погрешность в терминологии), получен правильный ответ. За решение можно выставить 4 балла.

Пример 2.

За решение выставляется 0 баллов. Учащийся не владеет приемом решения квадратного неравенства, допускает ошибки в применении формулы корней квадратного уравнения.

Список литературы

1. Государственная итоговая аттестация (по новой форме): 9 класс. Тематические тренировочные задания. Алгебра / ФИПИ автор - составители: Л.В. Кузнецова, С.Б.Суворова, Е.А.Бунимович и др. – М.: Эксмо, 2008.

2. Методические рекомендации для экспертов территориальных предметных комиссий по проверке выполнения заданий с развернутым ответом экзаменационных работ выпускников IX классов общеобразовательных учреждений //Кузнецова Л.В., Суворова С.Б., Рослова Л.О./М.: ФИПИ, 2010.

3. Алгебра. Сборник заданий для подготовки к государственной итоговой аттестации в 9 классе /Л.В.Кузнецова, С. Б. Суворова, Е. А. Бунимович и др. –М.: Просвещение, 2009.

4. ГИА. Математика. Государственная итоговая аттестация (в новой форме). 9 класс. Практикум по выполнению типовых тестовых заданий/ Л.Д. Лаппо, М.А. Попов. — М.: Издательство «Экзамен».2011.

5. Государственная итоговая аттестация. 9 класс. Математика. Тематические тестовые задания/ Л.Д. Лаппо, М.А. Попов. — М.: Издательство «Экзамен», 2011.

6. Государственная итоговая аттестация (в новой форме). Математика: сборник заданий/ Л.Д. Лаппо, М.А. Попов. — М.: Издательство «Экзамен», 2010.

7. ГИА. Алгебра. Тематическая рабочая тетрадь для подготовки к экзамену (в новой форме). 9 класс/ И.В. Ященко, А.В.Семенов, П.И. Захаров. – М: МЦНМО, Издательство «Экзамен», 2010.

8. Алгебра. Тематический контроль (в новой форме): 9 класс: к учебнику «Алгебра»: учебник для 9 кл. общеобразовательных учреждений/ под ред. С.А. Теляковского/ Ю.П.Дудницын, В.Л. Кронгауз. – М: Издательство «Экзамен», 2009.

9. Алгебра. Тематические тренировочные задания. 9 класс / С.С. Минаева, Л.О. Рослова. — М.: Издательство «Экзамен». — 141;

10. Государственная итоговая аттестация (в новой форме). Математика: сборник заданий / Л.Д. Лаппо, М.А. Попов. — М.: Издательство «Экзамен». — 158, (Серия «ГИА. Сборник заданий»).

11. ГИА-2010: Экзамен в новой форме: Геометрия: 9-й кл.: Тренировочные варианты экзаменационных работ для проведения государственной итоговой аттестации в новой форме/ Г.К. Безрукова, Н.Б. Мельникова, Н.В. Шмелёва. – М.: АСТ: Астрель, 2010 -62 [2] с.