12 Монохорд — однострунный музыкальный инструмент, распространенный в Древней Греции и Риме, а также в Западной Европе до XIX в.
и в этом качестве они фигурируют в культурах самых разных народов.
Если струну зажать посередине, разделив ее таким образом на две равные части, полученный тон составит с первоначальным тоном октаву. Частота вибрации половины струны составляет с частотой вибрации целой струны соотношение 2:1. Если же струну разделить на три равные части, мы получим соотношение 3:1. Деление на четыре отрезка дает соотношение 4:1. Если вспомнить приведенную выше таблицу соотношения обертонов, станет ясно, что принцип деления струны совпадает с этим соотношением.
Вполне вероятно, что раздел арифметики, посвященный простым дробям, восходит к учению Пифагора о музыке. Древнему мыслителю приписывается следующее высказывание: «Изучайте монохорд, и вам откроются тайны мироздания». Одна-единственная струна дает человеку возможность постичь не только микрокосмический аспект феномена вибрации, но и макрокосмические законы Вселенной.
Согласно учению Пифагора, сама Вселенная представляет собой грандиозный монохорд, чья струна протянулась от земли до небес. Ее верхний конец соединен с абсолютным духом, тогда как нижний — с абсолютной материей. Изучение музыки как точной науки ведет к познанию всех проявлений бытия. Пифагор прикладывал открытый им закон гармонических интервалов ко всем природным явлениям, стремясь доказать, что и стихии, и планеты, и созвездия связаны между собой гармоническими отношениями.
Пифагору принадлежит учение о «музыке сфер»: он утверждал, что движение каждого небесного тела через космическое пространство рождает звук. Звуки эти способен услышать лишь тот, кто специально разовьет свой слух для этой цели. И тогда «музыка сфер» зазвучит для него гармоническими интервалами монохорда.
Для Пифагора и его учеников понятие «музыка сфер» было не просто метафорой. По преданию, великий философ и в самом деле обладал способностью слышать, как плывут планеты по своим небесным орбитам. Проблема взаимосвязи звука и небесных тел на протяжении многих веков волновала умы многих мыслителей. И лишь недавно, используя математические принципы, основанные на вычислении орбитальной скорости планет, ученым удалось соотнести определенные звуки с определенными планетами. И вот удивительный результат: эти звуки оказались гармонически связанными. Быть может, удивительное умение древнего философа улавливать «музыку сфер» не было мифом.
До сих пор мы рассматривали гармоники лишь как музыкальный феномен. Однако гармоники порождаются любой формой вибрации. Слуховые возможности человека далеко не беспредельны. Но тот факт, что наше ухо способно воспринимать колебания лишь от 16 до 25 000 Гц, вовсе не означает, что за пределами этого ограниченного диапазона не существует неисчислимого множества звуковых волн, которые мы просто не слышим. Вибрация порождает гармоники независимо от того, что именно является ее источником. А поскольку Вселенная, по сути, и состоит из вибраций, то каждый заключенный в ней объект — от электрона, вращающегося вокруг ядра атома, до планеты, вращающейся вокруг звезды, — обладает собственным основным тоном и обертонами.
На острове Кротон располагалась школа Пифагора, где он посвящал неофитов в тайны Вселенной. Обучение в ней состояло из трех этапов. На первом уровне, где главным учебным пособием служил монохорд, ученики-«аку-стики» овладевали умением распознавать и затем вое* производить различные музыкальные интервалы. Второй уровень— ступень «математиков» — был посвящен собственно цифрам и вычислениям. Он же был этапом духовного и физического очищения и достижения полного контроля над эмоциями и помыслами. Ученик мог перейти на следующий уровень лишь при условии, что и разум его, и тело достойны воспринять священное знание. На третьем, и высшем, этапе «избранные» ученики приобщались к таинствам духовного перерождения и исцеления музыкой.
До наших дней дошли лишь скудные фрагменты того курса, которым завершалось обучение в школе Пифагора. Разработанные им теоремы и закон музыкальных интервалов сейчас являются неотъемлемым элементом математики и теории музыки, причем той их части, которую мы используем в повседневной жизни. А его философские концепции, такие как «музыка сфер», находят применение во все новых и новых эзотерических доктринах. Однако следует признать, что все это — процессы последних лет. До недавнего времени секреты исцеления с помощью звука и музыки были почти утрачены.
«ЛЯМБДОМА»
Попытки восстановить тайное учение Пифагора о звуке не прекращаются и по сей день. Предметом особого интереса и горячих дискуссий среди ученых является загадочная схема, именуемая «таблицей Пифагора» или «таблицей лямбдомы». Считается, что «лямбдому» открыл Пифагор, а неопифагореец Ямвлих сохранил ее для потомков. «Лямбдома» — древняя теория, стоящая на стыке математики и музыки и связывающая музыку с учением о математических соотношениях.
«Лямбдома» издавна привлекала к себе внимание математиков и других ученых. Считается, что она таит в себе глубокое эзотерическое знание о взаимоотношениях материи и духа, а также что она представляет собой числовое отображение Мировой Души.
«Таблица лямбдомы» состоит из двух частей. В одной представлены частоты, соответствующие делению струны. Во второй — гармонические ряды, соответствующие этим частотам.
Илл. 2.1. «Таблица лямбдомы»
Илл. 2.1. «Таблица лямбдомы»
Теория Кайзера и «лямбдома»
В 20-е гг. XX в. немецкий ученый Ганс Кайзер разработал на основе «лямбдомы» теорию мировых гармоник. Он обнаружил, что принципы гармонической структуры в природе описываются законом соотношения звуковых гармоник. Самого себя и последователей своей теории Кайзер окрестил «гармонистами». Много лет он посвятил возрождению науки о гармониках, стремясь вернуть ей былую славу. Исследование принципов, лежащих в основе взаимосвязи между музыкой и математикой, считал Кайзер, позволяет вывести законы взаимосвязи между тонами и числами. Таким образом, становится возможным выводить качество (тон, слуховое восприятие частоты) из количества (число) и, наоборот, количество из качества. В своей работе «Ак-роазис» (греч. — «слух, слуховое восприятие») Кайзер писал: Западная наука родилась в тот момент, когда была открыта и получила числовое выражение взаимосвязь между высотой тона и длиной струны — то есть была создана формула, позволяющая с предельной точностью выводить качество (высоту тона) из количества (длины струны или волны)».
По мнению Кайзера, утрата этого древнего учения и стала причиной того, что между понятиями «наука» и «душа» пролегла непреодолимая пропасть. Однако он не переставал надеяться, что, преодолев забвение, наука о гармониках вновь свяжет в единое целое материю и дух.
В соответствии с теорией Кайзера, принцип соотношения целых чисел лежит в основе не только учения о гармониках, но и множества других наук о живой и неживой природе — химии, физики, кристаллографии, астрономии, архитектуры, спектрального анализа, ботаники. Этот принцип нашел отражение не только в представлении о структуре звука, но и в периодической таблице элементов, и в учении о строении почвы.
Приведу еще один отрывок из «Акроазиса», где Кайзер рассуждает о взаимосвязи между гармоническими рядами и листьями растений:
«Если спроецировать все тоны в пределы одной октавы (как это сделал Кеплер в своей "Harmonice mundi"), прорисовав все соединительные отрезки, в результате получится схематическое изображение листа растения. Из этого следует, что октава, этот краеугольный камень любой музыкальной системы и основа слухового восприятия музыки, заключает в себе форму листа. Таким образом, получает новое, «психологическое» подтверждение теория Гёте об эволюции растений, выводящая, как известно, многообразие растительных форм из простейшей формы листа. Многообразие форм цветка — 2 (4, 8...), 3 (6, 12...), 5(10...) — можно рассматривать с точки зрения гармонии в качестве морфологических параллелей, соответствующих интервалам трезвучия... Только представьте себе, что
это означает, когда в одном цветке одного растения проявляется точное деление на три и в то же самое время — на пять. Даже самым ярым скептикам придется признать, что в душе каждого растения заключен некий формообразующий прототип (в данном примере — терции и квинты), придающий цветку, как и музыке, определенную форму по сходству с музыкальными интервалами».
Гармоники в архитектуре
В рамках своего учения о звуке Кайзер разработал теорию взаимосвязи законов гармоник и архитектуры. Впрочем, эту взаимосвязь еще веком раньше подметил Гёте, которому принадлежит знаменитое высказывание: «Архитектура — это застывшая музыка». В такой афористичной форме Гёте выразил идею о том, что принцип соотношения гармоник приложим и к области конструкций и сооружений. Далеко не все формы, встречающиеся в геометрии и природе, подчинены закону гармонических соотношений, но, по мнению Кайзера, именно формы, соотносящиеся с гармоническими рядами, представляются нам наиболее красивыми. Особенной соразмерностью и гармоничностью отличаются те конструкции, между составными элементами которых существует соотношение, осиованиое на октаве (2:1), кварте (3:2) и терции (5:4). Этот закон был прекрасно известен в древних школах мистерий. Не случайно самые прекрасные из афинских, римских и египетских храмов основаны именно на этих пропорциях.