Рассмотрим подробнее проблемы первого типа. Не стоит считать, что сами математики так уж всесильны в своей науке. Да и сама математика разрослась до таких огромных размеров, что давно уже нет таких универсальных гениев, подобных Ньютону, Эйлеру, Гильберту или Пуанкаре, которые работали почти во всех областях математики своего времени. Сегодняшняя картина математических исследований напоминает больше огромный муравейник, где каждый математик разрабатывает свою узкую область, и, порой не знает, что происходит в соседней.
В связи с этим интересно наблюдать, каким образом математики все-таки решают сложные проблемы. Зачастую успех в решении крупной проблемы достигается не путём последовательных логических шагов, а некоторым интуитивно-наглядным, до конца не обоснованным рассмотрением, оставляя на будущее строгое логическое его обоснование.
Проблемы второго типа, связанные с трудностью построения нужных математических моделей можно проиллюстрировать на примере задачи компьютерного перевода с одного естественного языка на другой. Следует отметить, что до сих пор не создано удовлетворительных программ-переводчиков. Оказалось, что человеческие языки очень сложны для формализации: смысл некоторых слов зависит от контекста, правила зачастую неоднозначны, этих правил очень много и они сложны.
Трудность применения математических методов в данном случае, связана с природой самой исследуемой области. А именно тем, что основные математические абстракции произошли от таких объектов реальности, как пространство, время, природные объекты, а не от каких-то явлений социальной действительности (к которым относится и язык). Поэтому они полезны и достаточно просто описывают физические, химические и биологические процессы, но соответствующие модели, например, языка получаются очень сложными. Можно еще добавить следующее замечание: правила языка, в отличие от законов природы довольно часто (непрерывно) меняются, поэтому математика, “отделившаяся” от природы при помощи абстракции 1000 лет назад, продолжает сохранять некоторые законы природы в себе, а если бы это “отделение” произошло от языка, который с тех пор изменился значительно, многие полезные связи разрушились бы, или усложнились.
Другие проблемы второго типа связаны с тем, что построенная в соответствии с обычной методологией математическая модель может неправильно описывать процесс или вообще не иметь смысла в исследуемой области. Такие модели содержат неконструктивные элементы, что может привести к противоречиям в теории и рассогласованию с опытом даже перспективных математических аппаратов. В современной физике теория создается не так, как это было в классической физике, когда исходя из некоторой картины мира (например, независимость материальных объектов от пространства и времени у Ньютона), строилась соответствующая математическая гипотеза. Сейчас же сначала формируется математический аппарат, а затем уже адекватная теоретическая схема, интерпретирующая этот аппарат. В отличие от онтологических принципов классической физики, которые помогали создавать или выбирать математические модели исследования, квантово-релятивистская физика сместила акценты для такого выбора в сторону гносеологических принципов (принцип соответствия, простоты, неопределенности и др.). То, что сначала вводится некоторая математическая модель, а затем интерпретируется, создает проблему с экспериментальным подтверждением теории: чтобы обосновать математическую гипотезу опытом, недостаточно просто сравнивать следствия из уравнений с опытными данными, необходимо каждый раз эксплицировать гипотетические модели, которые были введены на стадии математической экстраполяции, отделяя их от уравнений, обосновывать эти модели конструктивно, вновь сверять с созданным математическим формализмом и только после этого проверять следствия из уравнений опытом. Длинная серия математических гипотез порождает опасность накопления в теории неконструктивных элементов и утраты эмпирического смысла величин, фигурирующих в уравнениях. Поэтому в современной физике на определенном этапе развития теории становятся необходимыми промежуточные интерпретации, обеспечивающие операциональный контроль за создаваемой теоретической конструкцией. В системе таких промежуточных интерпретаций как раз и создается конструктивнообоснованная теоретическая схема, обеспечивающая адекватную семантику аппарата и его связь с опытом.
Математические гипотезы весьма часто формируют вначале неадекватную интерпретацию математического аппарата. Они "тянут за собой" старые физические образы, которые "подкладываются" под новые уравнения, что может привести к рассогласованию теории с опытом. Поэтому уже на промежуточных этапах математического синтеза вводимые уравнения должны быть подкреплены анализом теоретических моделей и их конструктивным обоснованием.
Возникнув, как вспомогательное средство расчета, математика превратилась в абсолютно необходимого помощника всех крупнейших исследований нашего времени.
В процессе математизации наук в основном используются три метода: математическое моделирование, формализация и аксиоматизация.
Проблемы применения математических методов в различных науках связаны с самой математикой (математическое изучение моделей), с областью моделирования (сложно построить модель из-за размытости границ явления) и c интерпретацией модели (построенная модель неправильно описывает явление).
Масштаб и эффективность процесса проникновения количественных методов в частные науки, успехи математизации и компьютеризации во многом связаны с совершенствованием содержания самой математики, с качественными изменениями в ней. Современная математика развивается достаточно бурно, в ней появляются новые понятия, идеи, методы, объекты исследования.
Математизация науки есть в сущности двуединый процесс, включающий рост и развитие как конкретных наук, так и самой математики. При этом взаимодействие между конкретными науками и математикой носит диалектической характер. С одной стороны, решение проблем конкретных наук выдвигает множество задач, имеющих чисто математический характер, с другой стороны, математический аппарат дает возможность точнее сформулировать законы и теории конкретных наук.
Важной причиной математизации современной науки является решение крупных научно-технических проблем. Это, в свою очередь, требует применения современной вычислительной техники, что нельзя представить без математического обеспечения. Можно отметить, что на стыке математики и других конкретных наук возникли дисциплины «пограничного» характера, такие как математическая психология, математическая социология и т.д. В методах исследования синтетических наук, таких как кибернетика, информатика, бионика и др. математика выполняет определяющую роль.
Процесс познания природы и прогресс человеческой практики неограниченны. Вместе с их развитием будут совершенствоваться и пополняться математические методы, поскольку прогресс науки и техники будет одним из решающих стимулов прогресса самой математики. Что придется развивать в математике для прогресса естествознания, техники, экономики, лингвистики и других аспектов общественного развития, мы, конечно, не знаем. Однако уже теперь можно высказать несколько общих утверждений, в том числе и такое, что прогресс математики неразрывно связан с опережающим развитием общих математических идей.
Литература
1. Математический энциклопедический словарь. Москва, 1988г.
2. Гнеденко Б.В. Введение в специальность математика, М.: Наука, 1991.
3. Бурбаки Н. Очерки по истории математики, М.: ИЛ, 1963.
4. Режим доступа: http://gnazim1.narod.ru/Matem1.htm – Дата доступа: 29.03.2009.
5. Режим доступа: http://www.imamod.ru/~vab/matmod/Mat_knowledge.htm – Дата доступа: 29.03.2009.
6. Режим доступа: http://www.sandert.ru/content/view/26/2/1/1/ – Дата доступа: 29.03.2009.
7. Режим доступа: http://mat.1september.ru/2003/14/no14_1.htm – Дата доступа: 29.03.2009.
8. Режим доступа: http://www.kolmogorov.info – Дата доступа: 29.03.2009.
9. Режим доступа: http://ru.wikipedia.org – Дата доступа: 29.03.2009.
10. Режим доступа: http://articles.excelion.ru/science/fizika/62800220.html – Дата доступа: 29.03.2009.