В этой связи, с теоретической и практической точек зрения все более актуализируется проблема разработки концептуальных подходов к построению системы непрерывного преемственного математического образования дошкольников, определения целей и оптимальных границ образовательного содержания дошкольных программ.
Понятие «математическое развитие» дошкольников трактуется в основном как формирование и накопление математических знаний и умений. Следует отметить, что основа такой трактовки понятия «математическое развитие» дошкольников была заложена еще в работах Л.А. Венгера и др. [ ]
Такое понимание математического развития устойчиво сохраняется в работах специалистов дошкольного образования. Например, в исследованиях В.В. Абашиной понятию математического развития ребенка дошкольного возраста посвящена целая глава. В этой работе дается определение понятию «математическое развитие»: «математическое развитие дошкольника - это процесс качественного изменения в интеллектуальной сфере личности, который происходит в результате формирования у ребенка математических представлений и понятий». [2, с.56]
Таким образом, математическое развитие рассматривается как следствие обучения математическим знаниям. В какой-то мере это, безусловно, наблюдается в некоторых случаях, но происходит далеко не всегда. Если бы данный подход к математическому развитию ребенка был верным, то достаточно было бы отобрать круг знаний, сообщаемых ребенку, и подобрать «под них» соответствующий метод обучения, чтобы сделать этот процесс реально продуктивным, т.е. получать в результате «поголовное» высокое математическое развитие у всех детей. [2, с.56]
В настоящее время прослеживаются два подхода к определению содержания обучения. Ряд авторов (Г.А. Корнеева, Э.Ф. Николаева, Е.В. Родина) эффективность математического развития детей связывают с расширением информационной насыщенности занятий. Другие же (П.Я. Гальперин, А.Н. Федорова) стоят на позиции обогащения содержания, направленного на развитие интеллектуальных способностей и формирование содержательных, научных представлений и понятий. [12, с.68]
Познание и отображение в представлениях общих связей и отношений дошкольники осуществляют посредством наглядно-действенного и наглядно-образного мышления (А. В. Запорожец, Л.А. Венгер, Н. Н. Поддьяков, С. Л. Новоселова и др.). Мы разделяем точку зрения, согласно которой все виды мышления развиваются одновременно и имеют непреходящее значение на протяжении всей человеческой жизни. Внешние, пробующие действия - исходная форма для развития действий образного и логического типа (Н.Н. Поддьяков). [20, с.56]
Организованный процесс наглядно-образного мышления - ознакомление с численными характеристиками пространства и времени - может быть основой развития предпосылок логического мышления. Решение мыслительных задач на установление пространственных и временных связей, причинных зависимостей, количественных отношений будет способствовать интеллектуальному развитию.
Математика должна занимать особое место в интеллектуальном развитии детей, должный уровень которого определяется качественными особенностями усвоения детьми таких исходных математических представлений и понятий, как счет, число, измерение, величина, геометрические фигуры, пространственные отношения. Отсюда очевидно, что содержание обучения должно быть направлено на формирование у детей этих основных математических представлений и понятий и вооружение их приемами математического мышления - сравнением, анализом, рассуждением, обобщением, умозаключением. [ 18,с.47]
В практике работы дошкольных учреждений накоплен достаточный опыт использования игр и игровых упражнений при обучении детей математике. В последние годы проведены исследования игр с математическим содержанием: сюжетно-дидактические игры математического содержания (А. А. Смоленцева); обучающие игры с элементами информатики и моделирования (А. А. Столяр); игры, направленные на интеллектуальное развитие детей (А. А. Зак, 3.А. Михайлова); строительно-конструктивные игры. Кроме этого, активно используются сюжетно-дидактические игры математического содержания, отражающие бытовые явления («Магазин», «Детский сад», «Путешествие», «Поликлиника» и др.), общественные события и традиции («Встреча гостей», «Праздник пришел» и др.). [27, с.124 ]
В процессе знакомства с новым содержанием и новыми действиями (сравнение предметов по величине, уравнивание количества, измерение) нужно использовать развернутые объяснения с показом действий и последовательности их выполнения. При этом объяснения должны быть предельно четкими, ясными, конкретными. Они даются в темпе, доступном восприятию ребенка.
Давая указания, педагог побуждает детей следить за действиями, разъясняет содержание действий и последовательность их выполнения, знакомит с их словесным обозначением. Успех обучения во многом зависит от организации учебного процесса. Хотелось бы обратить внимание на ряд положений. Обучение должно осуществляться как на занятиях, так и в процессе самостоятельной деятельности детей. [ 25,с.48]
На занятиях обязательно должна происходить смена деятельности: восприятие информации педагога, активная деятельность самих детей (работа с раздаточным материалом) и игровая деятельность (игра является обязательным компонентом занятия; иногда все занятие строится в форме игры).
Специфика дошкольного образования состоит, прежде всего, том, что его содержание должно обеспечить формирование наиболее значимых психологических свойств и способностей ребенка, которые во многом определяют весь путь дальнейшего развития (А. В. Запорожец). Особенность обучения дошкольников - его организация в форме игры и связанных с ними продуктивных и художественных деятельностей. Образно-символический характер игры позволяет использовать ее в качестве средства развития воображения, наглядно-образного мышления, овладения знаковой функцией сознания и формирования предпосылок логического мышления. Эмоциональная насыщенность игровых действий и личностный смысл игрового взаимодействия способствуют развитию эмоционального отношения к миру, развитию самосознания и осознания себя как индивидуума, своего места среди других. Развитие умственных действий логического типа успешно происходит в процессе овладения детьми средствами выделения основных, существенных отношений, лежащих за непосредственными восприятиями, отражающими эти отношения в виде схем (Д. Б. Эльконин, П. Я. Гальперин, Л. Ф. Обухова и др.). [24, с.59 ]
Изучение психолого-педагогической литературы убеждают в необходимости дальнейшего исследования вопроса организации процесса обучения математике детей дошкольного возраста, разработки и внедрения инновационных технологий и активного использования разнообразных приемов активизации умственной активности детей: включение сюрпризных моментов и игровых упражнений; организация работы с дидактическим наглядным материалом; активное участие воспитателя в совместной деятельности с детьми; новизна умственной задачи и наглядного материала; выполнение нетрадиционных заданий, решение проблемных ситуаций.
1.2 Традиционные и нетрадиционные формы и методы обучения детей математике
Наглядные, словесные и практические методы и приемы обучения на занятиях по математике в старшем дошкольном возрасте в основном используются в комплексе. Дети способны понять познавательную задачу, поставленную педагогом, и действовать в соответствии с его указанием. Постановка задачи позволяет возбудить их познавательную активность. Создаются такие ситуации, когда имеющихся знаний оказывается недостаточно для того, чтобы найти ответ на поставленный вопрос; и возникает потребность узнать что-то новое, научиться новому: Например, педагог спрашивает: «Как узнать, на сколько длина стола больше его ширины?» Известный детям прием приложения применить нельзя. Педагог показывает им новый способ сравнения длин с помощью мерки. [5, с.187]
Побудительным мотивом к поиску являются предложения решить какую-либо игровую или практическую задачу (подобрать пару, изготовить прямоугольник, равный данному, выяснить, каких предметов больше, и др.). Организуя самостоятельную работу детей с раздаточным материалом, педагог также ставит перед ними задачи (проверить, научиться, узнать новое ). [5, с.188]
Закрепление и уточнение знаний, способов действий в ряде случаев осуществляется предложением детям задач, в содержании которых отражаются близкие, понятные им ситуации. Так, они выясняют, какой длины шнурки у ботинок и полуботинок, подбирают ремешок к часам и пр. Заинтересованность детей в решении таких задач обеспечивает активную работу мысля, прочное усвоение знаний. [7, с.49]
Математические представление «равно», «не равно, «больше - меньше», «целое и часть» и др. формируются на основе сравнения. Дети старшего дошкольного возраста могут под руководством педагога последовательно рассматривать предметы, выделять и сопоставлять их однородные признаки. На основе сравнения они выявляют существенные отношения, например отношения равенства и неравенства, последовательности, целого и части и др., делают простейшие умозаключения. Развитию операций, умственной деятельности (анализ, синтез, сравнение, обобщение) в старшем возрасте уделяют большее внимание. Все эти операции дети выполняют с опорой на наглядность.
Рассматривание, анализ и сравнение объектов при решении задач одного типа производятся в определенной последовательности. Например, детей учат последовательному анализу и описанию узора, составленного из моделей геометрических фигур, и др. Постепенно они овладевают общим способом решения задач данной категории и сознательно им пользуются. [10, с.95]
Так как осознание содержания задачи и способов ее решения детьми этого возраста осуществляется в ходе практических действий, ошибки, допускаемые детьми, всегда исправляются через действия с дидактическим материалом.